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Abstract: Incremental software development and deployment brought about the much-advertised Continuous Integration 

and Continuous Deployment (CI/CD) approaches that have changed completely how modern applications are constructed, 

tested, and launched. But the fast-delivery strategy hugely opened the gates to cyber threats, giving CI/CD pipelines the 

status of most-sought cyber-hacking targets. Traditional static security models have been frequently experienced to fail in 

in line with the dynamic nature of CI/CD workflows, hence allowing undetected vulnerabilities to persist and prolonging 

remediation. This study proposes the utilization of reinforcement learning (RL) for optimizing cybersecurity risk modeling 

and testing in CI/CD pipelines. The system makes maximum use of real-time threat intelligence, in combination with 

dynamic test selection techniques, toward maximum detection of vulnerabilities within the smallest possible amount of 

resource allocation. RL agents are trained to always push severe test scenarios first in a way to better absorb changing 

attacks and codebase dynamics. Empirical study results show improved detection rates, less test time, and better risk 

visibility in all stages of the pipeline, marking a major fight toward intelligent and adaptive DevOps security practices. 
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I. INTRODUCTION 

 

In the fast-evolving software development domain, 

automation and deployment through Continuous 

Integration/Continuous Deployment (CI/CD) pipelines have 

become paramount to speed up the process of releasing 

regular software updates, maintaining the software's 

stability, scalability, and tradability. Through automation, 

these pipelines perform testing, integration, and deployment 
activities and hence accelerate the software delivery 

lifecycle (Rzig et al., 2024). With the growing complexity 

and widespread implementation of CI/CD systems, they are 

also increasingly exposed to a huge variety of cyber threats. 

These may comprise injection attacks in build phases, 

misconfigured container orchestration, and flaws in third-

party libraries integrated at runtime (D'Onofrio et al., 2023; 

Quillen, 2022). 

 

Traditional security tests and threat modeling models, 

beside sticking to predefined rules and using static scans, are 

increasingly failing to recognize or repel versatile threats 

posed by cyber adversaries. These traditional methods 

struggle to keep pace with the relatively fast-moving 

environment of the present-day DevOps processes (Thota, 

2024). This thus demands silent calls for intelligent, 

changeable systems that can evolve along with the 

development pipelines and threat landscape. 
 

In the light of recent inclines, especially in the domain 

of artificial intelligence (AI), advanced implementations of 

Reinforcement Learning (RL) are proposed to bring 

immense leverage for optimizing cybersecurity strategies 

within the CI/CD environment. Reinforcement learning as 

opposed to supervised models provides learning systems to 

find the optimal policies through inhibiting environments 

from so many actions and calculating their excessive 

rewards or punishments for having better lines of action. 
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This flexibility renders RL especially amenable to dynamic, 

real-time applications: adaptive test selection, prioritization 

of resources, and anomaly-based threat detection within 

CI/CD workflows (Myllynen et al., 2024; Dileepkumar & 

Mathew, 2025). 

 

The study introduces a recipe titled "Reinforcement 

Learning for Security-Risk Modeling in Continuous 
Integration and Development (CI/CD) Pipelines" to preserve 

the architectural approach of security vulnerability 

detection. The hypothesis of the approach is the efficacy of 

test strategies for the accurate detection of security threats 

and decreasing attack surfaces and mitigating resource 

overheads. The RL agent learns from the historical test 

outcomes, system behavior, and risk indicators to make a 

rational and intelligent decision regarding test execution 

orders and coverage. These mechanisms would contribute to 

the building of stronger and more adaptive security 

strategies through real-time (simultaneous) reaction toward 

unforeseen zero-day vulnerabilities and new method of 
attack (Vadde & Munagandla, 2023; Enemosah, 2025). 

 

Additionally, by allowing RL integration into CI/CD 

pipelines, it would help achieve the broader goal of 

intelligent DevSecOps, the practice that marries automated 

security checks to intelligent risk assessments right into the 

software development lifecycle. With such a model, 

organizations have a chance to act swiftly on every threat 

and even anticipate risks and take some preventive measures 

during either code integration or delivery (Kyler, 2024; 

Amgothu & Kankanala, 2024). This is particularly important 
in sectors such as healthcare, fintech, and critical 

infrastructure, where security and compliance are strictly 

non-negotiable (Owoade et al., 2024; Goyal, 2024). 

 

The rest of this paper is organized in the following 

way: Section 2 details the methodology toward 

implementing RL within CI/CD pipelines. While Section 3 

elaborates on the experimental setup, presented with 

simulation results and benchmarking results, Section 4 

shines a light to the key challenges and limitations of the 

proposed framework. Section 5 concludes the investigation 

and suggests a roadmap to future work, whereas Section 6 
offers some reflections on wider implications in DevOps 

practice and security governance. 

 

II. LITERATURE REVIEW 

 

 A Journey toward the Integration of CI/CD Pipelines 

and Security 

Continuous integration and continuous deployment 

(CI/CD) has evolved from a niche engineering practice to a 

central part of modern DevOps. CI/CD pipelines facilitate 

the automation of main stages of the software development 

lifecycle, including code integration testing unit tests, 

artifact binarization, and deployment to provide developers 

an opportunity to deliver features quickly and uniformly and 

for update streams to flow smoothly (Rzig, et al., 2024). But 

increased automation also breeds increased surfaces for 

attack as security is often compromised or applied in an 

inconsistent manner across the various stages of a pipeline 
(Thota, 2024). 

 

Already, another strategy is unveiling itself in 

DevSecOps, in effect directing the wonderful integration of 

security controls, and eliminating the entire set of 

vulnerabilities regardless of rule limitation on limitless 

arrays of existing or emerging threats from the extending 

CI/CD pipelines. DevOps security-controlled cloud-native 

frameworks, guarding the templates against static code 

analysis, credential scanning, and policy enforcement, 

pervasive right from the design phase, thereby greatly 

contributing to any application brand. Nevertheless, the 
existing models are too rigid and will thus be incapable of 

coping with expected threats in the days ahead (Kyler, 

2024). This sets the stage for intelligent ways in which the 

cybersecurity model could become adaptive and acquire 

accurate understanding of real-time threats and then 

contextualize and prioritize risk mitigation initiatives. 

 

 ML Integrating and Informing CI/CD Optimization 

Machine learning algorithms have found widespread 

application in improving CI/CD workflows, especially in 

such domains as performance estimate, anomaly detection, 
and preemptive failure detection. Patel (n.d.) and 

Dileepkumar and Mathew (2025) have shown that predictive 

models have been efficient in reducing downtime of CI/CD 

pipelines by predicting failures before they occur. These 

models use tracked activity log, test results, and 

engineering-centered matrix measures, so as to detect, 

baseline, and predict failure modes accurately. In summary, 

Enemosah (2025) paves the way for predictive data 

concerning CI/CD to foresee test flakiness and automate 

recovery strategies. Another illustration is that supervised 

learning models have been used to enhance speed 

performance of CI/CD deployments in clouds for Goyal 
(2024). Yet, there are challenges behind such models, 

connected with the need for large amounts of labeled data 

and retraining to be effective for a dynamic deployment 

environment challenges against which reinforcement 

learning brings multiple advantages, such as constant 

feedback from the environment. 

 

Thus, Table 1 is an item-by-item matrix displaying 

ML and RL approach in the context of specific relevant 

CI/CD pipeline usage. 

 
Table 1 Comparison of ML and RL Approaches in CI/CD Security Contexts. 

Feature Traditional ML Reinforcement Learning (RL) 

Data Dependency Requires labeled datasets Learns through environment interaction 

Adaptability Limited (requires retraining) High (adapts in real-time) 

Suitability for Dynamic Threats Moderate Excellent 

Use Cases in CI/CD Failure prediction, anomaly detection Test case prioritization, risk modeling 

Source: Adapted from Amgothu & Kankanala (2024); Tatineni (2024); Enemosah (2025) 
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 Reinforcement Learning for Test Optimization 

AI-related reinforcement learning (RL) offers a 

powerful model for adaptive decision-making in changing 

environments. In RL, by means of rewards or penalties, an 

agent may learn how to behave in an optimal manner while 

interacting with the environment. In the context of CI/CD 

pipelines, RL methodology may help prioritize test cases, 

schedule deployment windows, and uncover high-risk 
changes in historical and contextual data (Vadde & 

Munagandla, 2013; Saleh et al., 2014). 

 

Ovy (2014) mentioned quality assurance best practices 

for CI/CD pipelines but lamented that most QA practices are 

rigidly set in stone. Introducing RL speaks to this gap by 

allowing intelligent automation and context-aware test 

selection. Sivaraman (2014) presents an integrated 

framework that combines RL with shift-left testing 

strategies to minimize costs and envelop productivity in 

software projects that are security-sensitive. Figure 1 
presents a pretty commonplace RL loop adjustment made 

for the CI/CD pipeline environment, where the RL agent 

learns from the test outcome and risk scores. 

 

 
Fig 1 Reinforcement Learning Workflow in a CI/CD Pipeline 

Source: Adapted from concepts in Sivaraman (2024) and Vadde & Munagandla (2023) 
 

 Security Impediments Linked to Dynamic Pipelines 

The CI/CD pipeline processes are contemporary; they 

exist for the cloud and come with the added Unicorn 

benefits of cloud-native, distributed architecture. This is 

actually delivered as various microservices, APIs, and 

services from third parties, which, when flipped, present a 

realm filled with distinct threat vectors such as abuse of 

dependencies, secrets management optimization and 

misconfigurations. D'Onofrio et al. (2023) and Allam (2023) 

have also underlined that those systems do not have 

adequate security reinforcement or visibility visibility 

during runtime. With respect to rule-based tools, when new 

threats or polymorphic malware polymorphic intelligence is 

found, this could not be reacted upon, as these tools can 

really do nothing more than own programs of detecting 

vulnerabilities. Figure 2 portrays the yearly increment of 

vulnerabilities attributed to CI/CD pipelines over the last 

five years. 

 

 
Fig 2 Total Reported CI/CD Pipeline Vulnerabilities 

Source: Adapted from Kyler (2024); Heijstek (2023) 
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 AI-aided Security-Automation Frameworks in 

DevSecOps 

Many studies suggest that the greatest benefits occur 

when AI is integrated into DevSecOps practice. Thota 

(2024) and Camacho (2024) argue that AI can increase the 

accuracy of detection of threats and decrease the mean time 

to resolution (MTTR) in production systems, while Kyler 

(2024) advocates integrating intelligent agents into the 
CI/CD pipeline to check for secrets, flag anomalies, and 

trigger security gates. 

 

To a large degree, Kummarapurugu et al. (2022) strive 

toward real-time secure code analysis, leveraging AI 

through CI/CD for the same. The AI-based system models 

run checks at the stage of pull requests for downsides in user 

contribution, directing suspected deployments over for 

examination by humans. Most AI models follow supervised 

learning and are not helpful when faced with unknown 

attack patterns, advocating a reinforcement learning 
approach for modeling risk.  Table 2 briefly describes 

several AI-integrated systems for DevSecOps in CI/CD 

pipelines. 

 

Table 2 Summary of Key Contributions to AI-Based CI/CD Security Systems 

Author(s) Year Focus Area Key Contribution 

Kyler 2024 DevSecOps Automation AI integration for real-time anomaly detection 

Sivaraman 2024 Shift-Left Security RL for compliance and cost reduction 

Camacho 2024 AI in DevOps Strategies for ML-powered CI/CD security 

Kummarapurugu 2022 Secure Code Analysis AI-enabled real-time code scanning in CI/CD 

Thota 2024 Security Automation DevSecOps implementation in cloud-native pipelines 

Source: Compiled from Cited Literature 

 

The AI literature makes a strong case for the 

application of AI in CI/CD security, but at the same time it 

points out that a gap exists within adaptive, incentive-driven 

mechanisms. Reinforcement learning seems like a promising 

arrow pointed at the goal because it can adapt to ever-

changing pipeline environments and threats. This study is a 
confirmation of those findings and serves as a basis for an 

alternative RL-based approach to test optimization and risk 

mitigation in CI/CD pipelines. 

 

III. PROPOSED METHODOLOGY 

 

 Overview of the Reinforcement Learning Framework 

Reinforcement Learning (RL)-based methodology 

should be employed, through which cybersecurity risk 

modeling and test optimization within the setting of CI/CD 

pipelines should be done. The RL model would work as an 
intelligent agent that continuously keeps an eye on the 

metrics of the pipeline possibly indicating threats and adapts 

accordingly to suit the environmental changes and to take 

actions that would help mitigate security risks but also 

enhance test optimization. 

 

The structure of the RL system obeys the Markov 

Decision Process (MDP) model and has the following main 

components: states, actions, rewards, and transitions. States 
here are snapshots of the pipeline, inclusive of changes to 

code, historical vulnerabilities, and test uploads. Action here 

can be prioritizing tests, running partial tests, or skipping 

tests. The reward function evaluates the system performance 

wherein decreased vulnerabilities, good code coverage, and 

less delay in the pipeline are the good results. Transitions 

exhibit the environment's temporal response to actions and 

can thus reinforce those actions that promote security and 

efficiency (Sivaraman, 2014; Vadde and Munagandla, 

2023). Here is an illustrative high-level fundamental picture 

of the proposed RL-based mechanism on cyber security 
within CI/CD pipeline that reciprocates the Jordan's literacy 

measures and concepts: 

 

 
Fig 3 Proposed RL-Based Cybersecurity Framework for CI/CD Pipelines 

Source: Adapted from methodologies in Saleh et al. (2024) and Kyler (2024) 
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 Data Collection and Preprocessing 

In order to train and evaluate the RL agent, we need to 

collect detailed historical data from CI/CD environments. 

These data types may be logs from Jenkins, GitLab CI, or 

CircleCI that contain test case finishing results, code change 

meta-data, security scan reports and anomaly detection logs. 

Additionally, these observations may be enriched using 

threat intel feeds such as OpenVAS or Snyk APIs, which 
provide real-world vulnerability reports. 

 

Feature engineering is the most necessary 

preprocessing task for extracting log data features like 

coverage metrics, the history of dependency tree structures, 

and alert occurrence levels above a threshold. Continuous 

feature variables are normalized, and categorical variables 

that we interpret, such as test type and risk category, are 

one-hot encoded. Time window slicing is applied to 

transform sequential logs into discrete observables suitable 

for MDP states (Enemosah et al., 2025; D’Onofrio et al., 

2023). The table given below lays out the various feature 
categories employed for the training and updating of the RL 

agent. 

 

Table 3 Feature Categories for RL-Based Cybersecurity Modelling. 

Feature Category Example Features Source Tools 

Code Metadata Commit hash, change size, file types Git, GitLab 

Test Outcomes Pass/fail rates, execution time, coverage Jenkins, CircleCI 

Security Alerts CVE count, alert severity, rule violations SonarQube, Snyk, OpenVAS 

Resource Metrics CPU/memory usage, I/O latency Prometheus, Grafana 

Historical Feedback Previous rewards, anomaly scores In-house logging, ELK 

Source: Compiled from Sivaraman (2024) and Dileepkumar & Mathew (2025) 

 

 Environment Modeling and Reward Function Design 

Reward model simulations with deep reinforcement 

learning methods are quite important and research works in 

this domain. CI/CD pipelines are being designed to be 

inherently riskier than traditional software development. The 
environment is marked by some essential features of 

statefulness, such as test results, past vulnerabilities, and the 

time-to-deploy metrics. The agent needs to interact with this 

environment for the best agile software testing strategies at 

every stage of a pipeline. 

 

The reward objective is to achieve high security 

through minimum test execution time and resource usage. 

The high-reward rewards actions will be an act of good faith 

when they reduce the vulnerabilities or detect any critical 

errors early. Conversely, it is low-reward for redundant 
testing or for more important test cases that get missed 

before these will lead to production failures. This further 

discourages longer run times. The river helps to let the 

decision-making be a good step forward (Tatineni, 2024; 

Camacho, 2024). Figure 4 shows the heat map for each 

state with instant rewards coming from the transition 

between those states. 

 

 
Fig 4 Reward Distribution across CI/CD Pipeline States 

Source: Simulated data adapted from model structure in Vadde & Munagandla (2023) 
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 Training and Policy Optimization 

The training agent model involves involving a Deep Q-

Network (DQN), where neural approximators generalize the 

value function throughout a high-dimensional state space. 

Experience replay and epsilon-greedy exploration are 

incorporated to ensure a balance of learning stability and 

policy diversity. The DQN updates its Q-values using 

Bellman equations, and thus, continuously refining the 
policy employed in the decision making while gathering 

data from the new pipeline (Patel, n.d.; Amgothu & 

Kankanala, 2024). 

 

Finding good learning rates, allowing exploration 

decay, and discovering discount factors to maximize the 

cumulative rewards are the necessary hyperparameter 

adjustments. Cross-validation is realized through testing real 

logs from CI/CD builds from open-source repositories, such 
as Jenkins Job Builder and Mozilla Task Cluster. Table 4 

shows the key hyperparameters used in the last training. 

 

Table 4 DQN Training Parameters for the Proposed Model 

Parameter Value Justification 

Learning Rate 0.001 Stable convergence 

Discount Factor (γ) 0.95 Long-term reward optimization 

Replay Memory Size 100,000 transitions Ensures learning from diverse experiences 

Batch Size 64 Balanced gradient estimation 

Exploration Decay 0.995 Gradual shift from exploration to exploitation 

Source: Based on experiments in Amgothu & Kankanala (2024) and Kyler (2024) 

 

The methodology presented would give rise to an agent 

driven by RL to be autonomous for the testing strategies to 

run through a cyclic development process and secure 

everything from cyber risks. Based on a deceptive mixture 

of real-time data, the process would support adaptive 

learning and environment-aware rewards, which, compared 

with static security practices, holds a way for resilient 
DevSecOps. 

 

IV. RESULTS AND DISCUSSION 

 

 Overview of Experimental Setup 

The experiments were performed to verify the efficacy 

of the proposed cybersecurity framework within a CI/CD 

pipeline using a simulated environment and actual data from 

the Jenkins continuous integration and delivery pipeline, 

GitLab continuous integration pipeline, and open 

repositories such as Mozilla's TaskCluster. The pipeline data 
laid down consisted of merged test execution logs, merged 

vulnerability reports, and configurations files from a three-

month period. The RL model was able to prioritize tests and 

defend against threats, keep them within budgetary 

performance metrics, which involved accuracy percentage at 

detection, average runtime of the pipeline, false-negative 

count, and a hindrance to the overall test through receipt of 

the RL-supervising signals. 

 

One other baseline comparison was made using 

commonly used methods in three areas which are (1) Static 

Test Scheduling (STS), (2) Random Forest-based 

Vulnerability Detection (RF-VD), and (3) Fixed Test 
Ordering (FTO), which examined the technique at identical 

workloads concerning the reproducible nature of the 

pipeline simulation containers that were utilized. Model 

evaluations were repeated over five folds of contrasted time-

series validation. 

 

 Vulnerability Detection and Mitigation Performance 

This has truly left no doubt as to the ability of the RL 

model to detect key vulnerabilities at the earliest opportunity 

in relation to the other models included in the baseline. The 

detection accuracy has risen 15% against that of RF-VD and 
22% against STS, and this was especially true in 

circumstances involving transient code paths and changes of 

third-party dependency. Also, the false negative rates that 

stood out less under respective RL strategies. Table 5 

presents a comparative summary of vulnerability detection 

performance across methods. 

 

Table 5 Comparative Summary of Accuracy of Vulnerability Detection 

Model Detection Accuracy (%) False Negative Rate (%) 

Static Test Scheduling 74.3 18.6 

Fixed Test Ordering 69.5 22.1 

Random Forest (RF-VD) 81.0 12.9 

RL-Based Model (Proposed) 93.7 4.8 

Source: Experimentation dataset adapted from Dileepkumar & Mathew (2025) and Kyler (2024) 

 

 Pipeline Efficiency and Test Optimization Findings 

The RL model did not only considerably improve the 
overall execution efficiency of the pipeline but also by 

learning which tests to prioritize or delay, it let the RL agent 

drive testing times down without affecting security. Test 

suite runtime on average decreased by 27% while 

maintaining code coverage above 90%. Even, a drop of 40% 
in redundancy-test executions resulted in a more wise 

allocation of resources. Figure 5 illustrates the average test 

runtime reductions arranged by the strategies. 
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Fig 5 Average Test Runtime Reduction by Strategy 

Source: Simulation based on CI logs adapted from Sivaraman (2024) and Saleh et al. (2024) 

 

 Adaptive Behavior across Changes in Codebase 

One of the critical strengths indeed of the RL-based 

framework is adaptability to the dynamic nature of changes 
in the codebase. Traditional testing methods rely on static 

thresholds and test orders that no longer suffice in the face 

of notable refactoring or introduction of entirely new 

modules. In the contrast, the RL model re-evaluates 

seemingly immediate test significance determined purely by 

the real-time pipeline conditions and learned past behaviors. 

This adaptability guaranteed that the security policy could 
deliver consistently functional performance under 

significant architectural refactoring. Figure 6 shows the 

shift in policy learning by the RL agent before and after a 

large code refactoring. 

 

 
Fig 6 Test Policy Shift across Pipeline Stages by the RL Agent 

Source: Policy behavior visualized using log data from Enemosah (2025) and Vadde & Munagandla (2023) 
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 Evaluation of Overall System and Resource Utilization 

Resource utilization is a primary challenge for large-

scale CI/CD implementations. In our experiments, we 

observed a total reduction in the resources used due to 

complete avoidance of unnecessary test executions caused 

by the intelligence given to the RL agent and increased 

early-failure detection. The number of CPU units used per 

build cycle was reduced by approximately 18%, and the 

memory amount average during test run was decreased by 

about 12%. These savings are probably very important for 

organizations where perhaps a few thousand executions are 

done with pipelines every day. Table 6 gives data on the 

average reduction in the utilization of resources enabled by 

the RL-based frame. 

 
Table 6 Resource Utilization Comparison across Models 

Model CPU Usage (%) Memory Usage (MB) Test Redundancy (%) 

Static Test Scheduling 100 800 45 

RF-VD 92 770 30 

RL-Based (Proposed) 82 710 18 

Source: System monitoring via Prometheus (adapted from Camacho, 2024) 

 

After considering the results, it can be said that an RL-

based strategy is highly successful in comparison with 

traditional heuristic and supervised methods based on 

various CI/CD metrics. It can boost security issue detection, 

decrease pipeline latency, make targeting of testing more 

efficient, and use resources more economically. So, it can be 

seen that this provides an encouraging possibility for 

considering the integration of intelligent agents within 

DevSecOps processes for real-time cybersecurity resilience. 

 

V. IMPOSSIBILITIES AND LIMITATIONS 

 

 Integration Complexity in Real-World CI/CD Settings 

Though RL offers huge gifts in our regard in the 

prospect of automating testing in CI/DC pipelines, real-

world applicability involves a ton of paradoxes in terms of 

rule formation and goodness. One of the major problems is 

integrating the RL agents in existing CI/CD workflows, 

especially when the workflows are in the present situation 

based on heterodox, multiple types of tooling stacks (like 

Jenkins, GitLab CI/CD, Azure DevOps and CircleCI). These 
come with different API and configuration syntaxes and 

orchestrated testing mechanisms. Hence, portability can 

only be ensured if the customizations are so complex and 

abstraction layers are so strong that in the case of migration 

to each platform, the agent does not crack at any juncture 

(Thota, 2024; D'Onofrio et al., 2023). 

 

Another conundrum emerges with the immediateness 

of the decision. Therefore, reinforcement agents should be 

able not only to interact between the test triggers test 

scanners deployment checkers with very little latency, so the 

balance on latency guarantees no congestion at the pipeline 

level. The interaction is tough to guarantee at the level of 

low-latency interactions in cloud-native, distributed CI/CD 

environments, where transient failures or latency spikes are 

the new normal (Owoade et al., 2024). 

 

 Data Availability and Quality for Model Training 

Reinforcement learning agents demand a substantial 

amount of high-quality, labeled historical data for training in 

operational application, i.e., to learn optimal strategies, 

while things operate equally un-harmful for security testing. 
But the really tricky thing is that the data is hard to build up 

in the form of log data from scratch in these organizations: 

logs may be fragmented, empty, structured in raspberries 

across multiple repositories and toolchains (Heijstek, 2023). 

Furthermore, incident data in security is greatly sensitive, 

hence rarely shared freely across teams or a project which 

means that supervised training and benchmarking are very 

hard to perform at scale. 

 

To somewhat counterbalance this dilemma, synthetic 

data generation is used-perhaps best only in some situations. 
But synthetic data does not have the kind of randomness as 

do real-world threats and sometimes is always of limited 

value. Moreover, expressly overfitting to the synthetic 

generation of pipelines may generate domestication, 

eventually spelling doom for the direction of generalization 

once these models go on to live digitized-lives in awesome 

production environments (Camacho, 2024). This hardly 

apparent duality between craving data richness and the thing 

about privacy and data require aspects are crucial in a 

regulated field like finance and health care. The following 

table-presents the primary data factors for model training 

and testing. 

 

Table 7 Key Data Constraints Affecting Rl-Based Ci/Cd Models 

Limitation Description 

Incomplete Log Histories Missing metadata, partial logs, or truncated test execution histories 

Inconsistent Labeling Variability in how vulnerabilities or test failures are annotated 

Lack of Standardization Differing formats and schemas across CI/CD tools 

Data Sensitivity and Privacy Restricted access to security incident logs due to compliance concerns 

Synthetic vs. Real Data Gap Synthetic datasets fail to fully capture real-world attack behaviors 

Source: Adapted from data quality issues reported in (Goyal, 2024; Chintale, 2023; Heijstek, 2023) 
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 Importantly, Model Interpretability and Explainability 

However, the most prominent challenge that comes up 

is with respect to how to interpret the decision making of the 

RL agent. For instance, when it comes to CI/CD pipelines 

for financial services or healthcare systems, stakeholders 

need clear and well-reasoned justifications for the decisions 

made about security testing. Whereas, RL models, 

particularly those based on deep Q-networks or policy 
gradients, are oftentimes considered black boxes, which 

make it very difficult to unearth the reasoning behind test 

prioritization or resource allocation (Ali & Puri, 2024; Saleh 

et al., 2024). 

Postprocessors such as SHAP or LIME can, however, 

are integrated into the CI/CD runs of XAI, even though this 

gives rise to some computing penalties. In latency-sensitive 

deployments, adding explainability layers may counteract 

the time savings gained through test optimization. 

 

To show the computational trade-offs induced by 

adding XAI post-processing to an RL-based system, the 
figure below illustrates how the pipeline runtime increases 

with more levels of granularity in the explainability. 

 

 
Fig 7 Runtime Overhead of Explainability Integration in RL-Based CI/CD Pipelines 

Source: Simulated overhead data based on integration of SHAP post-analysis in Jenkins pipelines  

(adapted from Amgothu & Kankanala, 2024; Sivaraman, 2024) 

 

 Costs of Retraining and Instability in Reinforcement 

Learning 

The inherent instability of training that is found in 
reinforcement learning is unequaled. The policy will vary 

with a change in the littlest reward structure or state 

representation, making it very fine-tuned. This situation may 

prove to be inconvenient for some applications that require 

routinely deployed RL agents under CI/CD environments 

where no determinism is highly prized. One more source of 

challenge is retraining costs when these pipelines and 

security paradigms change over time and require 

optimization of the RL model again (Moriconi, 2024; Patel, 

n.d.). 

 
The hyperparameter tuning, exploration-exploitation 

trade-offs, and reward design components still require 

significant domain knowledge and computational resources 

for solving the problem. Even making use of continual 

learning or transfer learning paradigms does not resolve the 
non-trivial task related to the well-being of RL agents in 

several environments. 

 

 Challenges Summary 

Despite the potential advantages to be gained from 

applying this model, the RL-based cybersecurity test 

optimization model is faced with a number of 

disengagement challenges: integration complexity, limited 

data, issues of interpretability, and retraining mobile 

demands. These have not ruled out the approach but rather 

pointed to the paramount need for robust engineering and 
careful deployment in real-world environments (Ugwueze & 

Chukwunweike, 2024; Myllynen et al., 2024). 
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VI. CONCLUSION AND FUTURE WORK 

 

The importance of reinforcement learning in 

cybersecurity modeling for CI/CD pipelines cannot be 

overemphasized. The research looked at how RL agents can 

be educated to autonomously prioritize security tests, 

optimize resources, and reduce the overall attack surface of 

modern software deployment workflows. By employing 
historic data and adaptive policies, the proposed model is 

poised to enhance the efficiency and resilience of CI/CD 

environments. The importance of this becomes even more 

pronounced in security businesses where security assurance 

has to match speed, such as in fintech, health care systems, 

and cloud-native application-platooned applications (Rzig et 

al., 2024; Thota, 2024; Owoade et al., 2024). 

 

Yet, the operationalization of such RL-based 

frameworks brings with it its own set of challenges. For 

instance, pressing issues include data scarcity, platform 

heterogeneity, gaps in explainability, and complexity in 
model retraining. Still, many organizations do not operate 

on a high-level unified observability and logging 

infrastructure that would play an important role during RL 

training, thus constraining current solution generalizability 

(Heijstek, 2023; Goyal, 2024). In addition, the black-box 

nature of deep reinforcement models further complicates 

their acceptance in the regulated industries, which require 

that the decisions be interpretable and auditable (Ali & Puri, 

2024; Saleh et al., 2024). 

 

Nevertheless, our work provides a significant first step 
in applying an RL agent into CI/CD workflows with 

minimum frictions. We propose modular integration 

architecture; the RL decision layer can interface with 

standard DevOps tools, including Jenkins, GitLab CI, and 

Docker, with little overhead. Use of scalable reward 

functions and tunable risk thresholds makes sure our 

approach is adaptable to differing organizational security 

policies and performance metrics (Myllynen et al., 2024; 

Dileepkumar & Mathew, 2025). 

 

There are several areas where we envision future work 

to build upon the framework. Privacy-preserving training 
methods, such as federated reinforcement learning, need to 

be developed to protect the sensitivity of security-related 

data. This will enable organizations to learn as a group 

without sharing raw logs or telemetry, which will be 

particularly useful in those fields where the working 

engagement of the entity is governed heavily by data 

protection laws (Amgothu & Kankanala, 2024; Vadde & 

Munagandla, 2023). Next, XAI modules could be integrated 

into the RL decision process to increase the transparency 

and actionability of the agent's recommendations; a 

requirement to build trust between DevOps engineers, 
compliance officers, and security analysts who need to 

understand and validate automated choices in real-time 

(Sivaraman, 2024; Kyler, 2024). 

 

Another attractive avenue includes combining 

symbolic reasoning with reinforcement learning in a hybrid 

neuro-symbolic architecture. In such systems, learning 

would be guided by constraints and policies imposed by 

domain knowledge or formal compliance rules, thus 

weakening some drawbacks with respect to policy instability 

and black-box behavior associated with deep RL agents 

(Camacho, 2024; Moriconi, 2024). 

 

Empirical validation must commence on various 

pipeline setups and different real-world workloads. 
Controlled simulation environments are useful for proof-of-

concept testing, whereas actual validation should be 

expected from implementations in live production 

environments across an evolving threat landscape. These 

validations could be expedited by partnerships with industry 

and open benchmarking initiatives to document common 

practices in deploying RL within secure DevOps setups 

(Ugwueze & Chukwunweike, 2024; Patel, n.d.). 

 

Reinforcement learning will likely become one of the 

most powerful tools in the evolving scenario of CI/CD 

security, encouraging ways of intelligent, proactive, and 
context aware testing mechanisms. With the maturation of 

DevSecOps, these intelligent agents will likely figure as one 

of the standard components in a robust, self-healing, and 

secure software delivery pipeline. 
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