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Abstract: Fixture layout planning is critical for securely holding components during production processes. An optimal 

fixture arrangement minimizes surface deformation and prevents crack propagation, thereby maintaining the structural 

integrity of components. Traditionally handled by engineers, fixture planning has grown too complex for manual methods 

alone. Conventional optimization often gets stuck in local optima, limiting effectiveness. While machine learning offers 

improvements, it demands costly, labeled data. This paper proposes a multi-agent reinforcement learning framework with 

team decision theory. The approach enables agents to learn collaboratively, improving fixture planning without heavy data 

reliance by simulating fixture placement on a flexible surface to minimize deformation under uniform pressure. Multiple 

agents select fixture pairs, with deformation estimated using plate bending theory. The environment supports reinforcement 

learning and highlights the benefits of strategic, informed placements. 
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I. INTRODUCTION 

 

As technology advances, emerging machine learning 

models are driving the development of innovative solutions. 

Reinforcement Learning (RL) agents, in particular, offer 

significant potential in automated fixture planning by 
optimizing for factors such as cost, robustness, and usability. 

According to recent studies on automatic fixture design, RL 

agents learn through trial and error, receiving rewards for 

effective designs and penalties for suboptimal ones gradually 

enhancing their performance over time. The use of intelligent 

fixtures for reconfigurable manufacturing systems has 

garnered increasing attention in recent years. Fixtures, often 

referred to interchangeably as fixturing or fixel elements, are 

integral components within jig structures. These fixtures play 

a critical role in securely positioning and restraining a 

workpiece during various manufacturing processes, such as 
drilling, joining, or riveting. By ensuring precise placement 

and stability, fixtures enable efficient and accurate completion 

of complex manufacturing tasks. These fixtures are employed 

to ensure that the component remains within specified 

deformation limits, minimizing the risk of excessive deflection 

and the potential propagation of internal cracks. 

 

The design of physical fixtures, particularly robotic end 

effectors, plays a pivotal role in manufacturing, with the design 

process being highly dependent on the specific type of 

component being constrained. Fixture planning aims to 

strategically position fixturing elements to minimize residual 

stress and deformation during manufacturing operations, 

thereby preserving the component's structural integrity and 

performance. Traditionally, this task was handled by 

experienced design engineers, but recent advancements have 

explored optimization based approaches. Despite these 
improvements, fixture layout planning remains a complex 

challenge due to the inherent limitations of conventional 

optimization methods. 

 

Reinforcement learning (RL) has emerged as a promising 

alternative to traditional optimization techniques, particularly 

for problems involving multiple agents. While previous 

methods predominantly relied on a single robotic fixture, real-

world manufacturing environments often involve multiple 

fixtures that must coordinate their actions in a shared 

environment. This paper introduces a multi-agent 
reinforcement learning (MARL) framework for optimizing 

fixture layout planning, focusing on the collaborative behavior 

of robotic fixtures. The paper provides an overview of current 

fixture planning methods, presents the Multi-Robot Fixture 

Planner (MRFP) methodology, and evaluates its effectiveness 

through a case study on aerospace wing panel and spar drilling, 

comparing its performance to state-of-the-art fixture planning 

methods. 
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II. RELATED WORK 

 

The design of fixtures, particularly robotic end effectors, 

is a critical aspect of manufacturing, with the specific design 

approach depending on the type of component being 

processed. The objective of fixture planning is to strategically 

position fixturing elements to minimize residual stress and 

deformation during manufacturing, thereby ensuring the 
component's structural integrity and performance. 

 

 Existing System 

Historically, this task was managed by experienced 

engineers; however, recent advancements have introduced 

optimization-based techniques. Despite these innovations, 

fixture layout planning remains a complex challenge due to the 

limitations of traditional optimization methods. Fixture design 

in manufacturing involves two main parts: designing the 

physical fixtures and developing the strategy to hold the 

component in place. While there have been improvements in 
the physical design of fixtures, especially with the use of 

robotic fixtures, creating effective fixture plans is still a 

challenge. These plans are typically made by experienced 

operators, and their main purpose is to ensure that a component 

is securely held in place before tasks like drilling or riveting 

are performed. The goal is to minimize any unwanted 

deformation or movement of the component during these 

processes. 

 

Definition 1: Let A ⊆ A be a set of fixture locations 

chosen from the global set of positions A. The locations of A 
during a manufacturing operation τ should reduce the 

experienced deformation in 3-dimensions fw(τ) 

 

 
 

The majority of research on fixture design planning can 

be categorized into three primary approaches: part similarity-

based design, optimization-based design, and machine 

learning-based design. Case-Based Reasoning (CBR) was one 

of the earliest methods used, relying on the assumption that 

components within the same Stock Keeping Units (SKUs) are 

sufficiently similar to allow for the reuse of fixture plans. 

Another approach, Rule-Based Reasoning (RBR), generates 

rules to identify similarities between components. Both 

methods are particularly effective when the components are 
variations of the same SKU. However, these approaches 

depend on the assumption that components share a level of 

similarity and that the initial fixture plans stored in the database 

are optimal. Limitations arise in effectively retrieving suitable 

plans, especially when components deviate from the expected 

similarity, which can lead to the misidentification of 

appropriate fixture designs. 

 

In parallel with Case-Based Reasoning (CBR) and Rule-

Based Reasoning (RBR) methods, optimization-based 

approaches have also gained significant traction in fixture 

layout planning. These approaches extend the basic framework 
of fixture design by incorporating various constraints and 

parameters, aiming to optimize the fixture arrangement while 

adhering to specific design requirements and operational 

conditions. The objective is to identify the most efficient 

fixture configuration that meets these additional criteria and 

improves the overall design performance. 

 

Minimise        

 

τ ∈T (max | fw(τ)|) 
 

s.t. ai ≤ xi ≤ bi  

 

ci ≤ yi ≤ di            

 

Where:  

 

T    =  Set of manufacturing operations performed 

 

xi, yi = Coordinate positions of fixture i 

 

a, b  = Upper and lower position limits in the x-direction  
 

c, d = Upper and lower position limits in the y-direction 

 

 fw(τ)  = Deformation in component due to task τ 

 

Fixture design planning has used optimization methods 

for a long time, starting around the 1990s. One common 

method is the genetic algorithm, which starts with rough 

solutions and gradually improves them. Other techniques like 

Particle Swarm Optimization and strategies like reducing the 

number of fixture pins have also been tried. Some researchers 
added specific rules, like limiting how many fixtures can be 

placed on one surface, to improve results. However, these 

methods sometimes get stuck and can't find the best solution. 

 

More recently, machine learning has been used to 

improve fixture planning. Early methods used techniques like 

neural networks to recognize patterns, similar to older methods 

that relied on comparing new tasks to past examples. But 

supervised learning has limits because it needs a lot of labeled 

data and still doesn’t guarantee the best result. That’s why self-

supervised learning methods like reinforcement learning (RL) 

are now being explored. In RL, the system learns through trial 
and error without needing labeled data. Some researchers use 

RL to remove one fixture at a time, or train a virtual model 

(digital twin) to find better fixture plans. However, these 

methods can be slow and may not work well across different 

tasks unless trained separately for each one. 

 

 Multi-Agent Reinforcement Learning 

Multi-agent reinforcement learning (MARL) builds on 

the traditional RL methods by scaling the Markov decision 

processes (MDPs) to multiple agents. Single agent RL is 

characterised by the tuple ⟨S, A, R, P, γ⟩, where at each state st 

the agent takes an action at which transitions the environment 

to the next state s t+1 and provides reward Rt to the agent. The 

agent seeks to maximise the expected value of the discounted 

reward from the current state: 
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Where actions at each step at are chosen from a policy π. 

The agent’s overall goal is to find a policy that maximises the 

cost found in equation. For multiple agents, the sequential 

decision making of multi-agent reinforcement learning 

(MARL) is now a factor of all the agents operating in the 

environment. 

 

This can be formulated as a Markov or Stochastic game 

defined as a tuple ⟨N, S, {A}1:n, P,{R}1:n,γ⟩. In a Markov game, 

each agent n ∈ N takes an action from their action space which 

forms the joint action for all agents at = a1 t ×... ×an
 t ,∀n ∈ N. 

The probabilistic state transition function P now maps the joint 

action and the current state into the new state       P : st × at → 

st+1. Similarly to the single agent problem, each agent wants to 

maximise their cumulative reward through the value function: 

 

 

 

 
Fig 1 Comparison between the Architecture of a Centralized Multi-Agent Reinforcement Learning (LEFT) and the Decentralized 

Multi-Agent Reinforcement Learning (RIGHT) Architectures.

 

Equation shows that the value function is dependent on 

the joint policy of all agents π = {π1,...,πn}. This gives way to 

the equilibrium condition known as Nash equilibrium. 

Definition 2: For a set of agents N, an agent’s policy πn ∗ can 

be considered a best response to the set of policies for all other 

agents π−n ∗ = {π1 
∗,...,πi−1 ∗ ,πi+1 ,...,πn 

∗} excluding agent n 

provided that the inequality: 

 

 
 

In multi-agent reinforcement learning (MARL), the 

objective is to learn agent policies that converge to a Nash 

Equilibrium, a state in which no agent can unilaterally improve 

its outcome by deviating from its current policy. The literature 

typically distinguishes between two primary training 

paradigms: centralized and decentralized training. Centralized 

training employs a single, joint policy that governs the actions 

of all agents, making it well-suited for homogeneous agent 

populations. A common implementation of this approach is 

Centralized Training with Decentralized Execution (CTDE), 

where agents are trained collectively using shared information 
but operate independently during deployment. In contrast, 

decentralized training assigns each agent its own policy, 

enabling them to learn and act independently based on local 

observations. This approach is particularly important in 

environments with heterogeneous agents or in competitive and 

partially cooperative scenarios, where individual objectives 

and behaviors may diverge. Decentralized training is often 

more applicable in real-world systems, where agents are 

inherently distributed and may possess varying roles, 

capabilities, or goals. 

 

The decentralized and interactive nature of agents leads 

to a non-stationary environment, as the learning dynamics of 

one agent continuously alter the environment observed by 

others. To address this challenge, solution methods must 
explicitly account for this non-stationarity. Hu and Wellman 

demonstrated that Q-learning can be extended to compute 

Nash Equilibria by incorporating information about other 

agents’ actions into the Q-value updates. This formulation can 

be further generalized through the use of function 

approximators, such as neural networks, enabling scalability 

to more complex and high-dimensional settings. Actor-critic 

architectures have also shown considerable promise in MARL, 

with effective implementations utilizing either a single actor 

with multiple critics or fully decentralized configurations 

involving multiple actors and critics. Additionally, MARL 
frameworks have been successfully applied to hybrid human-

agent environments, where social modeling informs the 

agents’ decision-making processes. 

 

III. MULTI-AGENT FIXTURE PLANNING 

 

This section presents the Multi-Robot Fixture Planner (MRFP) 

system, developed using Multi-Agent Reinforcement 

Learning (MARL). It begins with an introduction to a 

simplified reinforcement learning framework tailored for 

fixture planning, which serves as the foundation for the 

subsequent development. The discussion then progresses to 
the cooperative mechanisms among multiple robotic agents, 
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detailing how collaboration enhances the decision-making 

process. Finally, a comprehensive overview of the fixture 

design planning process in a multi-robot environment is 

provided, highlighting the integration and coordination 

strategies employed within the system. 

 

 Feature-driven Bandits 

As mentioned , many systems don’t actually need the full 

complexity of a Reinforcement Learning (RL) model, known 

as a Markov Decision Process (MDP). Instead, they can use a 
simpler approach called contextual bandits. This is a version 

of the multi-armed bandit problem often discussed in RL. The 

main idea behind contextual bandits is that each situation (or 

state) the agent sees doesn’t depend on what happened before. 

In other words, there’s no need to worry about how one state 

leads to another, so the system doesn’t need a transition model 

(called P in MDPs). The tuple ⟨S,A,R,P,γ⟩ becomes ⟨S,A,R⟩. 
For fixture planning, Feature-driven Bandits represent the pro 

cesses that are performed when  fixtures are applied to a 

system, in particular drilling tasks. The set of drilling positions 

can be defined as the states S, where the agent is then allowed 
to choose an action from its policy that represents a fixturing 

position. This action and state is then used in the reward 

function R that is based on the maximum deformation that the 

component is experiencing during this task, which the agent 

uses to update its policy. In the contextual bandit setting, 

agents are looking to minimise the episodic regret over the 

total set of  states:  

 

 
 

In this context, a* denotes the optimal action that yields 

the highest expected reward in a given state, represented as 

Rs,a∗, and is compared against the actual reward obtained, Rs,a. 

As previously discussed, standard reinforcement learning 

(RL) and contextual bandit approaches are designed to select 

a single action per decision step. While this is appropriate for 

fixture planning involving a single agent placing one fixture at 

a time, many industrial applications require multiple fixtures 
to be positioned simultaneously across a component. This 

significantly increases the complexity of the problem, 

rendering single-agent solutions computationally intractable. 

 

 Decision Making for Multi-Agent Fixtures 

Deploying multiple robotic fixtures to secure a single 

large component necessitates cooperative behavior among the 

fixtures to minimize deformation during operation. To 

accommodate this, the standard contextual bandit framework 

can be extended to support multiple agents, each with distinct 

action spaces, forming the tuple ⟨S, G, R, {A}₁:N⟩. Here, G 
represents a team of N agents, each with potentially 

heterogeneous capabilities due to physical constraints that 

limit where fixtures can be placed. As a result, each agent 

possesses a unique action space. During each decision round, 

the team is presented with a specified drilling location, and 

each agent Vn ∈ G, for all n ∈ N, must select an appropriate 

fixturing position from its respective action space an ∈ An ∀ Vn 

∈ G. 

 

 
 

Definition 3: We denote the action set of agent Vn ∈  G, 

∀  n ∈ N as An as a finite discrete set of fixturing positions that 
each agent can take for each drilling position. The set of 

positions must satisfy the relationship:  

 

 
 

Since each agent is only allowed to place fixtures in 
specific areas, and not in other agents' areas, we make sure that 

every agent has its own unique set of possible actions. This 

means that no two agents can choose the same action their 

action sets don’t overlap at al. Now, suppose there are several 

drilling holes on a component. For each hole, every agent 

picks one action from its own action set. This action represents 

the position where the agent wants to place its fixture, and the 

choice is made based on the agent’s policy (which is basically 

its decision-making strategy that depends on the specific hole). 

The joint decision rule defined denotes the position of all 

fixtures on a component, which is translated into a reward 

using the reward function R: s× a→Rs,a. 
  

Choosing a useful and meaningful reward function in RL 

is challenging. While binary rewards r ∈ [0,1] are common, 

defining deformation limits varies by component. the reward 

must be convex to enable team-based learning.However, this 

is hard when the optimal reward R s,a*  is unknown or 

undefined. The  optimal reward can be defined as the  mean of 

the reward function R̄ over a finite set of states T, which can  

leads to the euation  : 

 

 
 

This allows us to define the cost function  as a 

maximisation problem which  are more  com mon in  RL as 

the first term in previous equation is constant, leaving us with 

the objective for training as:  

 

 
 

The objective is to maximize the sum of rewards for all 

agents, i.e., the return of a policy. 
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 The inequality from Theorem 1 holds if Equation 13 

remains the training objective. 

 The reward function must be differentiable for 

optimization. 

 For concave problems, agents should be rewarded more as 

deformation approaches zero  

 

e.g., using a Gaussian reward. 

 

 
 

Where: 

 

 dx, dz  = Maximum deformations in the x, z directions 

 σx, σz  = Variables determining the width of the curve 

The mean reward can be calculated over the function’s 

measurement domain. 

 

 
 

 Multi-Robot Fixture Planning 

To train the multi-robot fixture planning system, each 

robot follows a rule or strategy (called a policy, noted as φₙ) 

that helps it decide what to do at different drilling positions. 

These strategies are trained using  method called Nash-Q 

learning. This method is chosen because it's good at finding 

the best set of actions for all robots when they each have a 

limited number of actions to choose from (discrete actions). 
It's also better at reaching these good solutions compared to 

many other multi-robot learning methods. Nash-Q is a great fit 

for this system because it can perform at a human level, unlike 

many other learning methods.      

  

 
Fig 2 An Outline of the Training Process for the Multi-Robot Fixture Planner. Each Agent Policy φ Maps an Action to a Drilling 

Position Based on the Joint Action Learning Process. The FEA Solver uses the Drilling Positions and the Joint Action to Generate 

a Deformation Profile, Which the Reward Function uses to Generate a Reward for all the Agents to Optimise their Policies. 

 
It's also an off-policy approach, which means it can learn 

from any available data, not just data collected during 

training. This makes it more efficient and requires fewer 

training samples compared to on-policy methods like policy 

gradient (PG). 

 

Another big advantage is that Nash-Q reduces 

uncertainty in decision-making. PG methods use randomness 

to choose actions, which can lead to inconsistent behavior not 

ideal for critical tasks like those in aerospace. Nash-Q, on the 

other hand, helps the robots make more reliable decisions, 
even when they don’t have full information about what others 

are doing. This makes it especially useful for figuring out the 

best way to place fixtures with multiple robots. 

 

We can rewrite the equation with the maximisation 

approach  to determine Nash equilibrium Q-values for each 

agent at each state in the game: 

 

 
 

The training cycle is shown in figure 2 where the 

process starts with the robots selecting actions from a Set of 

Action Spaces (An ∈ Γ ) These actions are determined by each 

agent's Policy Network (ϕθ(s,a)), which learns and improves 

over time. The team of agents (Vn ∈ G) works together to 

choose a Joint Action that is then tested in the FEA Solver. 

The FEA Solver simulates the physical effects of the joint 

action on the workpiece using Finite Element Analysis 
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(FEA). Based on the simulation results, a Gaussian Reward 

Function calculates a Joint Reward (Rs,a) which evaluates 

how well the action minimized deformation. The agents then 

update their policy networks using the calculated loss 

function L(θ), helping them learn the best strategies. This 

loop continues until the agents maximize the rewards, 

ensuring stability and precision at the Set of Drilling Positions 

(s∈S). 

 

IV. RESULTS 

 

This section of the paper will outline the 

experimentation and results for evaluating the multi-agent 

reinforcement learn ing approach for robotic fixtures. To 

benchmark our approach, this section will cover two 

extensive case studies that are common within fixture design 

planning and a conceptual approach. 

 

In figure 3, there is a definite position of equilibrium, 

indicating the presence of a player-by-player equilibrium for 

the multi-agent f ixture design problem at the point where 
each agent chooses their best action. When the agents are 

trained in simulation to find the optimal positions for a single 

drilling hole in the method of the multi-armed bandit 

 

Table I Training Details for Test Cases 

Parameters Value 

Number of Agents 5 

Number of Episodes 100 

€- decay Starting Value 0.9 

€- decay Ending Value 0.05 

€- decay rate 3500 

Q-Value α Parameter 0.8 

Learning rate 1 × 10-4 

Reward  Function Direction x and z 

Material type Aluminum, Steel, Titanium 

Number of Fixtures 5 

 

 
Fig 3 An Equilibrium Plot for the 2-Player Game that Demonstrates the Existence of a Player-by-Player Equilibrium. 

 

The results of the training step can be found on the first 

three of graphs in figure 4 where some initial observations can 

be made. In figure 4(c), we can see that only fixture sets 5 and 

greater are able to improve on the quasi-optimal policy based 

on the deformation tolerance. The figure 4(a) helps assess how 

well the agents are performing on individual steps across all 

episodes. Initially, rewards might fluctuate or be low, but a 
positive trend suggests that the agents are learning better 

fixture placements that minimize deformation. We can see A 

steadily increasing return over episodes indicates effective 

learning and improved coordination between agents in figure 

4(b) Since reward is tied to deformation reduction, higher 

returns mean better fixture strategies. Regret is highest early 

on when agents are still learning. A downward trend in figure 

4(c) graph is a good sign it means agents are making fewer 

mistakes and getting closer to optimal decisions. Among all 
the output visualizations, the figure 4(d) stands out as a major 

diagnostic tool for evaluating the 
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Fig 4(a) Step vs. Step Reward 

 

consistency and robustness of fixture placement strategies in the MARL system. Unlike line plots that focus solely on average 

trends over time, this plot reveals the full distribution of deformation values across different fixture configurations. The shape and 

width of each violin provide deep insight  
 

 
Fig 4(b) Episode vs. Episodic Return 
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Fig 4(c) Episode vs. Episodic Regret 

 

 
Fig 4(d) Percentage Differences in Deformation 

 

into how variable or stable the deformation outcomes are 
highlighting whether the agents are converging toward 

consistent, optimal strategies. A narrow, short violin close to 

zero deformation difference indicates a highly effective and 

reliable fixture setup, whereas wide, irregular violins suggest 

inconsistency and learning instability. 

V. TEST CASES 
 

The first test case focuses on fixture planning for a bus 

component. In this scenario, we simulate a scenario where a 

large bus part, like a metal panel, needs to be supported by 

fixtures during assembly to prevent it from bending or 
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deforming. We use a multi-agent reinforcement learning setup, 

where each agent is responsible for selecting one fixture 

location from a set of predefined candidate points on the bus 

model. The environment either in Unity or a Python-based 

simulator takes these fixture placements and simulates the 

resulting deformation of the bus part. Based on how much the 

part bends under simulated conditions, the agents receive a 

shared reward: the lower the deformation, the higher the 
reward. During training, each agent observes information 

about the current fixture layout and bus geometry, makes a 

decision about where to place its fixture, and then updates its 

behavior using the reward feedback. Over many episodes, the 

agents learn to coordinate and place fixtures in optimal 

locations that minimize deformation. This approach mimics a 

real-world scenario in manufacturing, where smart, adaptive 

fixture design is crucial for quality control and efficient 

production. 

 

The second test case addresses the problem of fixture 
planning for a rotating fan assembly comprising a central 

motor and multiple wings (blades). This scenario simulates 

operational conditions in which the fan is subjected to 

rotational forces, leading to potential deformation of the wings 

if not adequately supported. The objective is to determine 

optimal fixture placements that provide structural stability and 

minimize deformation during rotation. 

 

A multi-agent reinforcement learning (MARL) 

framework is employed, wherein each agent is tasked with 

selecting one fixture position from a predefined set of 

candidate points on the fan model. The simulation 
environment developed using Unity or a Python-based physics 

engine evaluates the impact of these fixture placements by 

simulating rotational dynamics and calculating the resulting 

structural deformations. 

 

Agents receive a shared reward based on the degree of 

deformation observed: the lower the deformation, the higher 

the reward. Throughout the training process, each agent 

observes the fan geometry and current fixture configuration, 

selects an action (i.e., a fixture location), and updates its policy 

using reward feedback. Over successive episodes, the agents 
learn to coordinate their decisions to identify fixture 

placements that maximize structural integrity and balance 

under dynamic loading. 

 

This test case reflects real-world challenges in the 

manufacturing and assembly of rotating components, where 

accurate fixture design is critical to ensuring both mechanical 

stability and operational safety. 

 

VI. CONCLUSION 

 

In this paper, we introduced a multi-agent reinforcement 
learning method for finding optimal fixture plans for compo 

nents during drilling tasks. We outlined how robotic fixtures in 

a multi-agent system can constrain components and reorganise 

themselves to positions that are optimal for the desired task. 

We outlined the combination of multi-agent reinforcement 

learning and team decision theory into a framework that 

enables robotic fixtures to reconfigure themselves into optimal 

positions. 

 

FUTURE WORK 

 

Future work in this field would benefit from considering 

configurations involving n agents and m fixtures, where n>m, 

n<m , n=m, and n≠m , to generalize the framework's 
adaptability across diverse real-world setups. Investigate how 

communication constraints or network topologies affect 

coordination among agents as the number of agents and 

fixtures scales up. 
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