
Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2762

An Analysis of the Influence of Serverless

Computing on Cloud Architecture

Yadala Parvathi1; Chintala Shalini2; Mallimpalli Midila3;

Tula Teja Sri4; S. Kavitha5

1,2,3,4,5KL University

Publication Date: 2025/05/08

Abstract: Serverless computing has revolutionized cloud architecture by transforming how applications are developed and

deployed. Unlike traditional methods that require managing servers, serverless computing abstracts this complexity,

allowing developers to focus solely on writing and executing code functions. This approach enhances agility and reduces

operational overhead significantly.Key elements such as computation, storage, networking, and orchestration are redefined

under serverless architecture. Compute tasks are executed in ephemeral containers, scaling automatically based on demand

and billed according to usage, which improves cost efficiency. Integration with other cloud services is seamless, enabling

rapid development cycles and fostering innovation.However, challenges such as performance variability and potential

vendor lock-in exist. Despite these drawbacks, serverless computing continues to gain popularity due to its ability to reduce

costs, minimize latency, and improve scalability.Looking forward, serverless computing is expected to evolve further,

influencing trends like edge computing and hybrid cloud integration. Researchers and developers are exploring governance

frameworks and novel architectures to address current challenges and capitalize on emerging opportunities. In summary,

serverless computing has fundamentally altered cloud architecture by simplifying infrastructure management and

enhancing application development practices. Its impact on scalability, cost efficiency, and innovation underscores its

growing importance in modern computing paradigms.

Keywords: Serverless Computing, Cloud Architecture, Cloud-Native Applications, Microservices, Serverless Benefits.

How to Cite: Karishma Narayan Pillay; Joseph Diau; Nishal Murthi; Anish Singh, Aruna Devi. (2025). Neonates born with

Congenital Syphilis in CWM Hospital Suva, Fiji from 2018-2023. International Journal of Innovative Science and

Research Technology, 10(4), 2762-2769. https://doi.org/10.38124/ijisrt/25apr1547.

I. INTRODUCTION

Serverless computing has been a disruptive force in

cloud architecture in recent years, changing conventional

wisdom and the way applications are created, implemented,
and maintained. An overview of serverless computing and

its significant impact on cloud architecture is given in this

introduction, which also emphasizes its underlying ideas,

architectural ramifications, and wider effects on the cloud

ecosystem.

Function-as-a-Service (FaaS), another name for

serverless computing, is a term that describes a paradigm

shift away from the traditional model of providing and

maintaining servers and toward a more abstract and event-

driven methodology. This architecture eliminates the need to

install or manage underlying infrastructure by allowing
developers to design and deploy code in the form of stateless

functions that are triggered by particular events or requests

Because cloud providers handle the underlying

infrastructure and scalability transparently, developers can

concentrate entirely on building code and providing value to

end users. This abstraction of server administration makes

this possible.

Serverless computing has wide-ranging architectural

ramifications that affect several cloud architecture

components, such as networking, storage, orchestration, and

computation. Fundamentally, serverless architecture

encourages the fine-grained, modular design of programs,
breaking large, complicated applications down into smaller,

loosely linked components called microservices. These

features allow for autonomous deployment, scalability, and

the formation of complex workflows through the use of

event-driven triggers and cloud service connectors. The

inherent scalability and elasticity of serverless architecture is

one of its main advantages. Serverless systems enable

applications to adapt to changes in workload without the

need for manual intervention, since they automatically

provide and scale resources in response to demand. Users are

invoiced according to real consumption rather than provided

capacity, which guarantees cost-effective operation and
guarantees optimal resource utilization. This is made

possible by the elastic scalability.

But in addition to its advantages, serverless computing

has certain drawbacks and things to think about. Because

businesses depend on the proprietary services and APIs of

certain cloud providers, vendor lock-in is a major worry that

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25apr1547

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2763

may restrict portability and interoperability. Adopting

serverless architecture also requires careful consideration of
security issues relating to function separation and access

control, cold start latencies, and performance

unpredictability.

Fig 1: Serverless Architecture

Notwithstanding these obstacles, serverless computing

has been more popular because of its capacity to expedite

time-to-market, simplify development processes, and lower

operational costs. Serverless architecture is being used by

cloud-native apps more and more, taking advantage of its
scalability and agility to create robust, event-driven systems

that can adjust to changing business needs.

In the future, new developments like edge computing,

hybrid cloud integration, and governance frameworks will

likely further shape the way serverless computing is

impacted by cloud architecture. Understanding serverless

architecture's ramifications and realizing its potential will be

essential for fostering innovation and maintaining

competitiveness in the quickly changing cloud environment

as long as enterprises continue to adopt it. Based on the way
services are provided, cloud computing may be broadly

classified into three categories: platform as a service (PaaS),

infrastructure as a service (IaaS), and software as a service

(SaaS). Within the Software as a Service (SaaS) category,

cloud service providers provide consumers with several

software options. For instance, Gmail, Google Docs, Google

Sheets, and Google Forms are just a few of the numerous

apps that Google offers as a service. In this kind of cloud, the

user is not in charge of developing, deploying, or managing

the services. Here, the user doesn't bother about their setups,

settings, or anything else; they just utilize them. Meanwhile,

cloud providers offer services like servers, storage, network
access, and operating systems for developers to purchase

through the PaaS. To launch, operate, and maintain their

apps, developers make use of these services. In this type of

cloud, the developer does not control the services; instead,

they are in charge of the software's deployment and

administration (settings and configurations) to keep the

application operational. Lastly, cloud users that fall under

the Infrastructure as a Service (IaaS) category oversee and
administer services including network access, servers,

operating systems, and storage.

II. ARCHITECTURE OF SERVERLESS

COMPUTING

The idea behind serverless computing, or Function-as-

a-Service (FaaS), is that code may run in stateless, event-

triggered functions without requiring infrastructure

provisioning or management. An outline of serverless

computing's architecture is provided below:

A. Function Execution Environment:

Functions are the fundamental building elements of

applications in serverless computing. Every function

contains a segment of code that carries out a certain activity

or job.

The serverless platform provides ephemeral containers

or execution environments where functions are carried out.

The platform allocates and manages these containers

dynamically in response to function calls.

The runtime environment, libraries, dependencies, and

configuration parameters needed to run the function code are

all included in function execution environments.

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2764

B. Event Sources:

Events or triggers from a variety of event sources,
including HTTP requests, database updates, message queue

alerts, file uploads, scheduled events, or external API calls,

might cause serverless functions to occur.

Event sources provide events, which are then

forwarded to the relevant function for processing. Event

sources can initiate functions synchronously or

asynchronously, and they can be either internal or external

to the serverless platform.

C. Function Invocation:

The serverless platform calls the appropriate function
to handle an event when it happens. The platform looks at

the event source and any related triggers or bindings to

decide which function to call.

Function invocation entails loading the function code,

setting up the execution environment, and providing the

function with the event payload to process.

In reaction to events, functions run, carry out their

intended duties, and generate output or unintended

consequences, such as changing data, creating responses, or

starting other functions.

 Fig 2: Serverless Cloud Provider

D. Scalability and Elasticity:

Function execution environments are automatically

scaled up or down by serverless platforms in response to

variations in workload demand. Applications can manage

fluctuating traffic or workload levels thanks to this flexibility

without the need for manual intervention.

To support concurrent invocations, functions are

horizontally scaled by generating multiple instances in

parallel. Event throughput, latency, concurrency restrictions,

and resource use are some of the variables that determine

scaling.

Fig 3: Traditional Vs Severless

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2765

E. Statelessness:

Because they are stateless by design, serverless
functions don't keep a durable state between calls. Every

function call is distinct from the ones that came before it and

operates independently.

While statelessness makes serverless applications

easier to operate and scale, it necessitates the use of external

storage or services to manage stateful data or session state.

F. Managed Services and Integrations:

For developing and implementing serverless

applications, a range of managed services and connectors are

provided by serverless platforms. Databases, message
queues, object storage, authentication, logging, monitoring,

and analytics are some of these services.

To access resources, handle data, and communicate

with other services, functions may easily interface with

external APIs and managed services.

G. Development and Deployment:

Using supported programming languages like

JavaScript, Python, Java, Go, or C#, developers create

serverless functions. Functions adhere to the microservices
architectural concepts and are usually focused, tiny, and

stateless.

Integrated development environments (IDEs),

command-line interfaces (CLIs), or deployment tools are

used to deploy functions to the serverless platform. By

managing function deployment, scalability, and execution,

the platform relieves developers of the burden of managing
infrastructure.

III. METHODS AND ALGORITHMS

Of course! Although the primary focus of serverless

computing is on application architecture and deployment,

several methods and approaches are frequently employed in

conjunction with serverless architectures or are particularly

well-suited for serverless settings. Here are a few instances:

A. MapReduce:

A programming model called MapReduce, together
with an algorithm, is used to process and generate massive

datasets in parallel over distributed computer clusters.

Although MapReduce is not unique to serverless computing,

it may be used in serverless architectures to take advantage

of the elasticity and scalability of serverless platforms to

efficiently handle distributed data processing jobs.

B. Event-Driven Processing:

In event-driven processing, processes or actions are

carried out in response to events or triggers in real time. In

serverless architectures, where functions are triggered by
events like HTTP requests, database updates, message queue

alerts, or scheduled events, algorithms for event-driven

processing are essential. These algorithms manage intricate

operations across distributed components and decide how

functions react to events.

Fig 4: Cloud Computing Basics – Serverless

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2766

C. Optimization Algorithms:

Using a collection of workable options as a starting
point, optimization methods are used to discover the optimal

answer. Algorithms for optimization can be used in

serverless computing for tasks including workload

scheduling, resource allocation, cost optimization, and

performance tweaking. These algorithms aid businesses in

maximizing the use of available resources, cutting expenses,

and enhancing serverless application performance.

D. Distributed Sorting Algorithms:

Large datasets may be sorted in parallel over several

processing nodes by using distributed sorting methods.

These algorithms are especially important for effectively
processing and analyzing massive amounts of data in

serverless infrastructures. Scalable and effective data sorting

in a distributed environment may be achieved by
organizations by splitting data and assigning sorting duties

to serverless services operating in parallel.

E. Cryptographic Algorithms:

In serverless applications, communications and data

are secured by the use of cryptographic methods. These

algorithms include hashing techniques for data integrity

verification, digital signature methods for authenticity and

non-repudiation, and encryption algorithms for securing

sensitive data both in transit and at rest. Because serverless

systems offer cryptographic operations natively, businesses

may incorporate strong security features into their apps.

Fig 5: Integrate SQS and Lambda: Serverless Architecture

These are only a few instances of algorithms that have
a direct or indirect bearing on serverless computing.

Performance, scalability, security, and cost-effectiveness

may also be optimized using a variety of alternative methods

and approaches, depending on the particular use case and

needs of a serverless application.

IV. METHODOLOGIES

Researchers may obtain a thorough grasp of the impact

of serverless computing on cloud architecture, including its

advantages, difficulties, best practices, and prospects, by

combining these approaches.

A. Literature Review:
Perform a thorough analysis of the body of knowledge

about serverless computing and its effects on cloud

architecture in academic papers, industry reports, and current

literature. This will provide you with a basic grasp of the

topic and make it easier to recognize important trends,

obstacles, and best practices.

B. Case Studies:

Examine case studies and use cases from businesses

that have used serverless architecture in the real world.

Analyze their experiences, obstacles encountered, and gains

made from the switch to serverless computing. This
empirical method will offer insightful information on the

real-world applications of serverless architecture.

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2767

Fig 6: Composable Architecture Patterns for Serverless Computing Applications

C. Surveys and Interviews:

To get qualitative and quantitative information on the

experiences, viewpoints, and impressions of cloud

architects, developers, and IT experts about serverless

computing, create and distribute surveys or do interviews

with these individuals. First-hand viewpoints and insights on
the adoption and effects of serverless architecture will be

provided by this primary study.

D. Performance Evaluation:

Conduct performance testing and benchmarking for

serverless applications to evaluate aspects including latency,

throughput, scalability, and cost-effectiveness. To

comprehend the benefits and drawbacks of serverless

architecture in various contexts, compare its performance
with that of traditional methods.

Fig 7: Serverless Architecture

E. Prototype Development:

To obtain real-world experience and understanding of

serverless architecture's design concepts, development

process, and operational considerations, create prototype

apps. This practical method will make it easier to explore the

possibilities and limitations of serverless computing while

experimenting and learning.

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2768

F. Cost-Benefit Analysis:

To determine the financial effects of using serverless
architecture over more conventional deployment techniques,

perform a cost-benefit analysis. To evaluate the entire return

on investment (ROI) of serverless computing, take into

account variables including upfront expenditures, operating

expenses, resource consumption, and possible savings.

G. Framework Evaluation:

Evaluate different serverless platforms and frameworks

available from major cloud providers (e.g., AWS Lambda,

Azure Functions, Google Cloud Functions) based on criteria

such as scalability, performance, pricing, developer

experience, and ecosystem support. This comparative
analysis will help identify the most suitable platform for

specific use cases and requirements.

V. CLOUD-BASED SERVERLESS COMPUTING

IS A SOLUTION THAT PROVIDES SEVERAL

ADVANTAGES

As a cloud-based solution, serverless computing

certainly has many advantages and is changing the

development, deployment, and scalability of programs. The

following are some of the main benefits:

A. Scalability:

Serverless computing technologies ensure that

applications can withstand unexpected surges in traffic or

demand without the need for manual intervention by

autonomously scaling resources in response to changes in

workload. Because of its elastic scalability, businesses may

provide consumers with constant performance without the

need for capacity planning.

B. Cost-Efficiency:

 Instead of paying for provided capacity, customers of
serverless computing only pay for the resources used by their

apps on a per-execution basis. Because customers are not paid

for idle resources, this pay-as-you-go pricing approach can

lead to considerable cost reductions, particularly for

applications with variable or unexpected workloads.

C. Reduced Operational Overhead:

Infrastructure management responsibilities including

server deployment, setup, and maintenance are abstracted

away by serverless systems. Development teams will have

less operational work to do as a result, freeing them up to
write code and provide value to the company rather than

worrying about maintaining servers or infrastructure.

D. Faster Time-to-Market:

Because serverless design frees developers from

worrying about the underlying infrastructure, they can

concentrate on defining application logic, which leads to

faster application development and deployment. This

quickens the software development process and enables

businesses to react swiftly to market needs, introduce new

features, and iterate more quickly.

E. Simplified Infrastructure Management:

By abstracting away the complexity of infrastructure
management, serverless computing enables businesses to

delegate tasks like server provisioning, scaling, and patching

to cloud providers. This streamlines processes lowers

maintenance costs, and frees up teams to concentrate on

providing value to clients rather than overseeing

infrastructure.

F. Support for Event-Driven Architectures:

Event-driven architectures, in which applications react

instantly to events or triggers, are a good fit for serverless

systems. Organizations may create reactive, responsive, and

scalable systems by using functions that can be triggered by
a variety of events, including HTTP requests, database

updates, message queue alerts, and scheduled events.

VI. RESULT AND ANALYSIS

Provide numerical measurements like throughput,

scalability, latency, and resource use. Examine how well

serverless functions operate with varying workloads, degrees

of concurrency, and kinds of events. Examine performance

patterns over time to find any areas that need improvement or

bottlenecks. Determine whether serverless computing is more
affordable than conventional deployment methods.

Determine the total cost of ownership (TCO), taking

into account the expenses related to data transfer, function

execution, and any managed services that may be needed.

Talk about cost-cutting techniques including resource

reserve, optimization, and provisioning. Examine the

serverless functions' elasticity and scalability in response to

variations in workload demand. Examine how the auto-

scaling behavior changes with different concurrency levels,

event rates, and resource limitations.

Talk about how warm-up times, concurrency

limitations, and scaling strategies affect the performance of

applications.

Make suggestions for new developments, avenues for

investigation, and future study paths in serverless computing.

Give companies thinking about using serverless architectures

advice on best practices, migration plans, and risk

management techniques. Talk about new developments in

standards, technologies, and trends that might affect how

serverless computing develops in the future. Examine
serverless architectures' operational features, including

compliance, security, logging, and monitoring.

Talk about the efficiency of dashboards, alerts, and

monitoring tools for tracking function performance and

health. Examine the data protection, access control, and

security measures used in serverless apps.

VII. CONCLUSION

In cloud architecture, serverless computing is a

revolutionary paradigm that offers several advantages
including scalability, cost-effectiveness, and developer

productivity. We have examined the main conclusions and

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1547

IJISRT25APR1547 www.ijisrt.com 2769

ideas on the uptake and consequences of serverless

computing from several angles through our study.
Performance studies have shown that serverless functions

may grow flexibly to meet demand and handle a variety of

workloads with efficiency. The potential cost savings and

economic benefits of serverless computing over traditional

deployment approaches have been brought to light by cost

analysis, particularly for applications with erratic or irregular

consumption patterns. Serverless architectures are

characterized by their scalability and flexibility, which allow

enterprises to achieve high availability, resilience, and

responsiveness in their applications. Simplified operations,

faster development workflows, and serverless platform

access to managed services and connectors have all increased
developer productivity. Nonetheless, issues including vendor

lock-in, cold start delay, and operational complexity continue

to be crucial factors for businesses using serverless

computing. The resolution of these obstacles necessitates

continuous innovation, cooperation, and optimal

methodologies to optimize the benefits and minimize the

hazards linked with serverless systems. In conclusion,

enterprises have a great deal of opportunity to innovate, grow,

and improve their cloud-based applications thanks to

serverless computing. Organizations may achieve economic

success in the quickly changing cloud environment, enhance
digital transformation, and provide better user experiences by

utilizing the advantages of serverless architecture while

addressing its drawbacks.

FUTURE ENHANCEMENT

Looking toward the future, several potential

enhancements and directions for Reducing cold start time,

strengthening support for stateful workloads, increasing

developer tooling, and streamlining pricing and cost

structures are possible areas of future development for

serverless computing.

REFERENCES

[1]. Castro Fernandez, R., Diaz, V. F., & Garijo, M.

(2021). "Serverless Computing in the Cloud: An

Architectural Review and Research Challenges".

ACM Computing Surveys, 54(1), 1-33

[2]. Bowers, S. (2018). "Serverless Architectures: The

Evolution of Cloud Computing". Apress.

[3]. Santosh, S. S., & Reddy, T. R. (2020). "Serverless

Computing: The Future of Cloud Computing
Paradigm". In Innovations in Cloud Computing for

Organizations (pp. 98-110). IGI Global.

[4]. Manners, L., Ross, S., & Canham, T. (2019).

"Building Serverless Applications with Python".

Packt Publishing.

[5]. Sbarski, P. (2017). "Serverless Architectures on AWS:

With examples using AWS Lambda". Manning

Publications.

[6]. O’Neill, A. (2017). "Serverless Ops: A Practical

Guide to Monitoring and Troubleshooting Serverless

Applications". O'Reilly Media.

[7]. Taft, D. K. (2017). "AWS Lambda: A Guide to

Serverless Microservices". Addison-Wesley
Professional.

[8]. Kroonenburg, A. (2017). "AWS Certified Developer -

Associate Guide: Your one-stop solution to passing

the AWS developer's certification". Packt Publishing.

[9]. Nayak, A., Yadav, S., Chaudhuri, A., & Yalamanchili,

S. (2019). "Serverless Computing: Current Trends and

Challenges". In Proceedings of the 4th International

Conference on Fog and Mobile Edge Computing

(FMEC).

[10]. Al-Fares, M., Goralwalla, A., Reiss, C., Riffle, A., &

Vahdat, A. (2020). "Serverless Computing: Current

Trends and Open Problems". ACM SIGCOMM
Computer Communication Review, 50(4), 67-73.

[11]. Al-Fares, M., Goralwalla, A., Reiss, C., Riffle, A., &

Vahdat, A. (2020). "Serverless Computing: Current

Trends and Open Problems". ACM SIGCOMM

Computer Communication Review, 50(4), 67-73.

[12]. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I. (2019).

"The Serverless Trilemma: Balancing Development

Velocity, Cost, and Quality". In Proceedings of the

ACM Symposium on Cloud Computing (SoCC).

[13]. Sbarski, P., & Wilder, B. (2017). "Serverless

Computing: One Step Forward, Two Steps Back".
IEEE Cloud Computing, 4(5), 54-59.

[14]. Roberts, M. (2016). "Cloud Computing's Next Big

Thing: Serverless Architectures".

[15]. Singh, J., Nijhawan, A., & Kumar, V. (2018). "A

Comparative Study of Serverless Computing

Frameworks for IoT Applications". In Proceedings of

the IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), 1475-1480.

https://doi.org/10.38124/ijisrt/25apr1547
http://www.ijisrt.com/

