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Abstract: Wildfire prevention and effective grassland burning management rely heavily on accurate Fire Danger Index 

(FDI) modeling to predict and mitigate fire risks. However, the scarcity and inconsistency of real-world fire data pose 

significant challenges in developing robust predictive models. This study explores the integration of synthetic data 

generation algorithms with machine learning to enhance FDI modeling for improved wildfire risk assessment. By leveraging 

generative adversarial networks (GANs), variational autoencoders (VAEs), and physics-informed neural networks (PINNs), 

this research aims to generate high-fidelity synthetic fire data that simulate diverse environmental conditions, fuel moisture 

levels, and ignition patterns. The synthesized datasets augment real-world observations, enabling more accurate FDI 

computations and predictive analytics. Additionally, we assess the impact of synthetic data augmentation on deep learning-

based fire spread simulations to improve early warning systems. The proposed approach enhances decision-making for 

wildfire prevention, controlled grassland burning, and resource allocation, ultimately contributing to more resilient fire 

management strategies. The findings highlight the potential of synthetic data-driven methodologies in addressing data 

limitations, optimizing FDI accuracy, and advancing predictive wildfire risk modeling. 
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I. INTRODUCTION 

 

A. Background and Significance of Wildfire Prevention and 

Grassland Burning Management 

Wildfire prevention and the management of grassland 

burning are critical components of ecological stewardship, 

particularly within fire-dependent ecosystems such as the 

shortgrass prairies of North America. Historically, these 

prairies experienced natural fire regimes that maintained their 

structure, composition, and biodiversity. However, 

anthropogenic activities, including extensive livestock 

grazing and fire suppression policies, have disrupted these 

natural cycles, leading to ecological imbalances (Brockway 

et al., 2002). The suppression of natural fires has facilitated 

the encroachment of woody species into grassland areas, 

altering habitat structures and reducing the prevalence of 

native herbaceous plants. This shift not only threatens 

biodiversity but also increases the susceptibility of these 

ecosystems to severe wildfires due to the accumulation of 

combustible biomass. Implementing prescribed burns during 

specific seasons has been shown to enhance grass and forb 

cover, thereby restoring ecosystem functionality and 

resilience (Brockway et al., 2002). Moreover, the timing of 

prescribed fires plays a pivotal role in controlling invasive 

species. For instance, conducting burns during the summer 

months can effectively reduce populations of invasive plants 

such as spotted knapweed (Centaurea maculosa), thereby 

promoting the recovery of native plant communities (Emery 

& Gross, 2005). Such targeted management practices are 

essential for preserving the ecological integrity of grasslands 

and mitigating the adverse effects of invasive species. 
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B. Challenges in Traditional Fire Danger Index (FDI) 

Modeling 

Traditional Fire Danger Index (FDI) models, such as the 

McArthur Forest Fire Danger Index, have long served as 

essential tools for assessing wildfire risks. However, several 

limitations reduce their effectiveness in modern wildfire 

management. 

 

One major challenge is the reliance on simplistic 

assumptions and a limited set of variables. These models 

typically consider factors like temperature, humidity, wind 

speed, and fuel moisture content but often overlook critical 

elements such as fuel composition, topography, and human 

activities. This narrow scope results in less accurate 

predictions of fire behavior and potential risk (Hazra et al., 

2018). 

 

Additionally, traditional FDI models operate with static 

parameters that do not adjust for regional differences or 

changes in vegetation and climate over time. This lack of 

adaptability leads to generalized assessments that may fail to 

capture specific local fire risks (Rodrigues et al., 2022). 

 

Spatial and temporal resolution is another significant 

limitation. Many of these models function at broader scales, 

making it difficult to detect localized fire risks or respond 

quickly to rapid shifts in fire conditions. This often delays 

critical management decisions and resource deployment 

(Hazra et al., 2018). 

 

Furthermore, traditional FDI models struggle to 

integrate emerging data sources, such as real-time weather 

updates and satellite-based remote sensing data. Without this 

integration, the models provide outdated fire danger 

assessments that may not reflect current environmental 

conditions (Rodrigues et al., 2022). 

 

C. The Role of Synthetic Data Generation in Fire Risk 

Prediction 

The integration of synthetic data generation techniques 

into fire risk prediction models has emerged as a pivotal 

advancement in enhancing the accuracy and reliability of 

wildfire forecasting. By simulating complex fire scenarios, 

these methods address the limitations posed by scarce or 

incomplete real-world datasets, enabling the development of 

more robust predictive models. 

 

Cheng, Guo, and Arcucci (2023) introduced a 

generative model employing three-dimensional Vector-

Quantized Variational Autoencoders to produce spatial-

temporal sequences of wildfire burned areas. This approach 

successfully generated coherent fire scenarios that 

incorporated geophysical variables such as vegetation and 

slope, thereby enriching the dataset used for training 

predictive models. The synthetic data facilitated the creation 

of surrogate models capable of accurately forecasting wildfire 

dissemination, even in regions lacking extensive historical 

fire records. 

 

Similarly, Shaddy et al. (2023) developed a conditional 

Wasserstein Generative Adversarial Network (cWGAN) to 

infer fire arrival times from satellite active fire data. The 

cWGAN generated samples of likely fire arrival times, which 

were utilized to assess prediction uncertainties. When tested 

on California wildfires, this method demonstrated high 

accuracy, with an average Sorensen's coefficient of 0.81 for 

fire perimeters and an average ignition time error of 32 

minutes. The synthetic data generated through this model 

enhanced the initialization of coupled atmosphere-wildfire 

models, leading to improved fire spread forecasts.  
 

D. Objectives and Scope of the Study 

 

 Objectives 

This study aims to enhance wildfire prevention and 

grassland burning management by integrating synthetic data 

generation algorithms into predictive Fire Danger Index 

(FDI) modeling. The specific objectives include: 

 

 Developing a data-driven approach to improve the 

accuracy and reliability of FDI models by incorporating 

synthetic data generation techniques. 

 Addressing data scarcity issues in wildfire risk prediction 

by augmenting real-world datasets with AI-generated 

synthetic data. 

 Evaluating the effectiveness of machine learning 

algorithms in improving predictive analytics for fire risk 

assessment. 

 Comparing traditional FDI models with AI-enhanced 

models to assess improvements in early warning 

capabilities and decision-making for fire management. 

 Exploring policy implications and practical applications 

of AI-driven FDI modeling in real-world wildfire 

mitigation strategies. 

 

 Scope 

The study focuses on the integration of synthetic data 

generation in predictive wildfire risk assessment, particularly 

in regions susceptible to uncontrolled fires. It covers: 

 

 Theoretical and practical aspects of Fire Danger Index 

(FDI) modeling. 

 Machine learning techniques for synthetic data generation 

in environmental modeling. 

 Implementation of AI-driven fire risk assessment models. 

 Case studies demonstrating the efficacy of synthetic data-

enhanced FDI models. 

 Policy recommendations for adopting AI-enhanced 

wildfire prevention strategies. 

 

E. Structure of the Paper 

This paper is organized into seven key sections to 

thoroughly explore the enhancement of wildfire prevention 

and grassland burning management through synthetic data 

generation algorithms for predictive Fire Danger Index (FDI) 

modeling. The Introduction establishes the research context, 

objectives, and significance of the study. The Literature 

Review examines existing FDI models and their limitations, 

highlighting the need for improved predictive accuracy. The 

Methodology details the synthetic data generation algorithms 

employed and their integration into FDI modeling. The 
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Results present findings from experimental analyses and case 

studies, demonstrating the impact of synthetic data on model 

performance. The Discussion interprets these results, 

considering practical implications for fire management 

strategies. The Conclusion summarizes the study's 

contributions and suggests avenues for future research. 

Finally, the References section compiles all sources cited, 

ensuring proper attribution and facilitating further 

investigation. 

 

II. OVERVIEW OF FIRE DANGER INDEX (FDI) 

MODELING 

 

A. Definition and Importance of Fire Danger Index 

The Fire Danger Index (FDI) is a quantitative measure 

that assesses the potential severity of wildfire conditions 

based on prevailing environmental factors. It integrates 

variables such as temperature, relative humidity, wind speed, 

and fuel moisture content to provide a numerical value 

indicative of fire risk levels. Higher FDI values correspond to 

increased fire danger, facilitating the implementation of 

appropriate fire management strategies as shown in Figure 1. 

 

In the United States, the National Fire Danger Rating 

System (NFDRS) employs the Burning Index (BI) as a 

critical component to evaluate fire control efforts. The BI is 

derived from the Spread Component (SC) and the Energy 

Release Component (ERC), reflecting the potential flame 

length at the fire's head. This metric aids in determining the 

necessary resources for effective fire suppression (Bradshaw 

et al., 1984). 

 

Similarly, Australia utilizes the McArthur Forest Fire 

Danger Index (FFDI), developed in the 1960s to assess fire 

danger in forested regions. The FFDI combines variables 

such as temperature, relative humidity, wind speed, and a 

drought factor to produce a numerical index. This index 

guides fire management decisions, including the allocation of 

firefighting resources and the issuance of public warnings 

(Noble et al., 1980). 

 

The importance of the FDI lies in its ability to inform 

proactive wildfire management. By providing a standardized 

measure of fire potential, it enables authorities to implement 

timely preventive measures, allocate resources efficiently, 

and enhance public safety. For instance, during periods of 

elevated FDI, restrictions on activities that could ignite fires 

may be enforced, and firefighting teams can be strategically 

positioned in high-risk areas (Igba, et. al., 2025). 

 

Moreover, the FDI serves as a critical tool for 

communication among fire management agencies, 

facilitating coordinated responses to wildfire threats. Its 

standardized metrics allow for consistent interpretation across 

different regions and jurisdictions, promoting unified 

strategies in mitigating fire risks. 

 

 
Fig 1: Visual Representation of Fire Danger Index (FDI) and Its Role in Wildfire Risk Assessment (Dayboro, 2025) 

 

Figure 1 illustrates the Fire Danger Rating System 

linked to the Fire Danger Index (FDI), which measures 

wildfire risk based on factors like temperature, humidity, 

wind speed, and fuel dryness. The scale ranges from Low-

Moderate (0-11) to Catastrophic/Code Red (100+), with 

increasing values indicating higher fire danger. This system, 

similar to Australia’s McArthur Forest Fire Danger Index 

(FFDI), guides firefighting strategies, resource deployment, 

and public warnings. It ensures timely action during extreme 

conditions to protect lives, property, and ecosystems. 
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B. Conventional Approaches in Fire Danger Index (FDI) 

Calculation 

Fire Danger Indices (FDIs) play a vital role in wildfire 

management by providing quantitative assessments of 

potential fire risk based on environmental conditions. 

Traditional FDI calculation methods have evolved over 

decades, incorporating meteorological data, fuel 

characteristics, and empirical observations to estimate fire 

danger with greater precision. 

 

In Australia, the McArthur Forest Fire Danger Index 

(FFDI) and Grassland Fire Danger Index (GFDI) are widely 

used tools developed by A.G. McArthur in the 1960s. These 

indices rely on key meteorological variables such as 

temperature, relative humidity, wind speed, and a drought 

factor to assess fire danger levels in forested and grassland 

ecosystems. Initially designed as graphical meters, these 

models were later refined into mathematical equations by 

Noble et al. (1980) to support computational applications. 

The FFDI formula combines these variables to categorize fire 

danger into levels ranging from low to catastrophic, serving 

as a crucial guide for fire management strategies (Noble et al., 

1980). 

 

Similarly, Canada developed the Canadian Forest Fire 

Danger Rating System (CFFDRS), a comprehensive 

framework for evaluating fire danger. Central to this system 

is the Fire Weather Index (FWI), which integrates several 

components including the moisture content of fine fuels, 

loosely compacted organic layers, and deep organic layers. It 

also considers the rate of fire spread and the total fuel 

available for combustion. Daily weather observations such as 

temperature, relative humidity, wind speed, and precipitation 

are used to update the index, ensuring dynamic assessment of 

fire potential (Stocks et al., 1989). 

 

In the United States, the National Fire Danger Rating 

System (NFDRS) is extensively utilized. This system applies 

mathematical models that incorporate weather data, fuel 

types, and topographical features to evaluate fire danger. Key 

outputs from the NFDRS include the Spread Component 

(SC), which estimates the forward rate of spread of a head 

fire; the Energy Release Component (ERC), which reflects 

potential energy release per unit area; and the Burning Index 

(BI), which estimates the potential difficulty of fire control 

based on flame length. These metrics support land 

management agencies in making informed decisions on fire 

prevention and suppression (Bradshaw et al., 1984). 

 

Another widely used tool is the Keetch–Byram Drought 

Index (KBDI), which estimates soil moisture deficit as a 

critical factor influencing fire potential. The KBDI is 

calculated based on daily maximum temperature and 

precipitation, providing valuable insights into the dryness of 

soil and duff layers. Higher KBDI values indicate more 

severe drought conditions and increased fire risk, making it 

an essential indicator for fire management planning as 

represented in Table 1 (Keetch & Byram, 1968). 

 

Table 1: Summary of Conventional Approaches in Fire Danger Index (FDI) Calculation 

Approach Description Key Metrics Used Limitations 

Angstrom Index 
Uses temperature and relative 

humidity to assess fire risk. 

Temperature, Relative 

Humidity 

Ignores wind speed and fuel 

conditions. 

Keetch-Byram Drought 

Index (KBDI) 

Estimates soil moisture deficit 

to predict fire potential. 

Precipitation, Soil Moisture, 

Temperature 

Lacks real-time adaptability to 

sudden weather changes. 

Canadian Fire Weather 

Index (FWI) 

Incorporates multiple weather 

variables to assess fire risk. 

Wind Speed, Temperature, 

Humidity, Precipitation 

Complex and requires extensive 

meteorological data. 

National Fire Danger 

Rating System 

(NFDRS) 

A comprehensive model 

integrating fuel conditions and 

weather. 

Fuel Moisture, Temperature, 

Wind Speed, Humidity 

Requires continuous updates 

and calibration. 

 

C. Limitations of Existing Fire Danger Index (FDI) Models 

in Wildfire and Grassland Fire Management 

While models like the McArthur Forest Fire Danger 

Index (FFDI) and the National Fire Danger Rating System 

(NFDRS) have been pivotal in wildfire risk assessment, their 

predictive accuracy and reliability remain constrained. 

According to Okika et al. (2025), these models struggle with 

capturing the complexities of wildfire behavior, often 

producing forecasts that vary significantly based on the 

reliability of input data and the model's applicability to 

specific scenarios. Alexander and Cruz (2013) further 

emphasize that despite technological advancements, existing 

models are still limited by an incomplete understanding of 

wildland fire dynamics and the unpredictable nature of fire 

environments. 

 

A significant weakness of traditional FDI models is their 

tendency to underestimate extreme fire events. Ismail and 

Gharakhanlou (2024) revealed that when compared to 

machine learning models, conventional indices frequently fail 

to accurately forecast severe fire occurrences, particularly 

during high-risk periods. This underestimation can 

compromise the preparedness and response strategies of fire 

management agencies, increasing vulnerability during critical 

events. 

 

Additionally, traditional models depend on static fuel 

characterizations, which fail to capture real-time changes in 

vegetation moisture content or fuel load variations. Systems 

like the NFDRS use predefined fuel models, leading to 

discrepancies between projected fire danger and actual 

ground conditions, thus affecting the precision of fire 

management decisions. 

 

Another critical limitation is the insufficient integration 

of climatic and topographical variations. Most existing FDI 

models rely on a limited set of weather parameters and do not 

account for microclimates or terrain-specific features that 
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significantly influence fire behavior. This reduces the spatial 

resolution of fire danger assessments and can result in high-

risk areas being overlooked within broader zones assigned 

uniform danger levels. 

 

Challenges in data assimilation further hinder these 

models. The nonlinear and irreversible nature of wildfire 

dynamics makes it difficult for traditional FDI systems to 

incorporate real-time observational data effectively. This 

limitation often leads to inaccuracies in predictions, 

emphasizing the need for advanced data assimilation 

techniques capable of handling the complex behavior of 

wildfires. 

 

Operational constraints also limit the effectiveness of 

traditional FDI models. The requirement for extensive and 

precise input data, which is not always available in remote or 

resource-constrained regions, hampers their applicability. 

Additionally, some models have significant computational 

demands, restricting their real-time use during fast-evolving 

fire situations where timely decision-making is critical. As 

illustrated in Figure 2, these constraints highlight the need for 

modernized approaches to enhance the utility of fire danger 

assessments. 

 

 

 

 
Fig 2: Diagram Illustrating the Key Limitations of Existing Fire Danger Index (FDI) Models in Wildfire and Grassland Fire 

Management 

 

Figure 2 illustrates the limitations of existing Fire 

Danger Index (FDI) models in wildfire and grassland fire 

management by categorizing them into six main branches: 

Predictive Accuracy and Reliability, Underestimation of 

Extreme Fire Events, Static Fuel Characterization, Limited 

Integration of Climatic and Topographical Variations, 

Challenges in Data Assimilation, and Operational 

Constraints. Each branch is further broken down into sub-

branches that highlight specific issues, such as the 

applicability of models to diverse fire situations, the 

underprediction of extreme fire events, static fuel models, and 

the limited integration of real-time data, weather, and terrain 

features. The diagram emphasizes the challenges in 

incorporating dynamic environmental changes, the nonlinear 

nature of fire behavior, and the operational barriers that 

hinder the practical application of FDI models, ultimately 

affecting the accuracy and effectiveness of fire management 

efforts. 
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D. The Need for Advanced Data-Driven Solutions 

Traditional Fire Danger Index (FDI) models, such as the 

Canadian Forest Fire Danger Rating System, have been 

foundational in assessing wildfire risks (Stocks et al., 1989). 

However, these models often rely on historical data and may 

not fully account for dynamic environmental changes, leading 

to potential inaccuracies in predicting fire behavior. To 

enhance predictive accuracy, integrating advanced data-

driven approaches, like the Minimum Travel Time (MTT) 

algorithm, offers a more nuanced understanding of fire spread 

patterns (Finney, 2002). By incorporating real-time data and 

sophisticated modeling techniques, these solutions can 

significantly improve wildfire prevention and grassland 

burning management strategies. 

 

III. SYNTHETIC DATA GENERATION 

ALGORITHMS FOR FIRE RISK PREDICTION 

 

A. Concept and Applications of Synthetic Data in 

Environmental Modeling 

Synthetic data refers to artificially generated datasets 

designed to replicate the statistical characteristics of real-

world data without compromising sensitive or confidential 

information (Goerge et al., 2024). In environmental 

modeling, synthetic data is a valuable resource used to 

overcome challenges related to data scarcity, privacy 

concerns, and the logistical difficulties of field data 

collection. By leveraging computational algorithms, 

researchers can simulate various environmental variables and 

processes, enabling robust modeling, analysis, and prediction 

(Elith & Leathwick, 2009). 

 

One significant application of synthetic data is in 

species distribution modeling (SDM), where it helps predict 

species distributions, particularly when empirical occurrence 

data is sparse or biased. Synthetic data can generate pseudo-

absence records or augment existing datasets, enhancing the 

reliability of correlative SDMs. This is crucial in conservation 

planning and biodiversity assessments when comprehensive 

species occurrence data is lacking (Elith & Leathwick, 2009). 

Similarly, mechanistic niche modeling benefits from 

synthetic data by filling gaps in physiological parameters 

needed to simulate species responses under various climate 

scenarios. This approach deepens the understanding of 

species-environment interactions and improves forecasts of 

climate change impacts on biodiversity (Kearney & Porter, 

2009). 

 

In climate change impact assessments, synthetic 

datasets facilitate the exploration of potential ecosystem 

responses to varying climate scenarios by simulating key 

environmental variables like temperature and precipitation. 

Such simulations inform adaptive management strategies and 

improve the resilience analysis of vulnerable habitats (Okafor 

et al., 2024). Synthetic data also plays a critical role in 

environmental risk assessments where empirical data is 

limited, modeling hazards such as pollutant dispersion or 

wildfire spread to inform mitigation efforts in regions lacking 

comprehensive monitoring systems (Ijiga et al., 2024). 

 

Additionally, synthetic data is increasingly used to train 

machine learning models for environmental prediction tasks. 

For instance, generating synthetic land cover datasets 

enhances the accuracy of remote sensing classification 

models, supporting more effective land-use planning and 

resource management (Enyejo et al., 2024). 

 

B. Types of Synthetic Data Generation Algorithms 

Synthetic data generation algorithms are essential for 

creating artificial datasets that preserve the statistical 

properties of real-world data, thus supporting robust 

predictive modeling tasks (Idoko et al., 2024). These 

algorithms employ varying methodologies, including 

statistical techniques, deep learning models, and hybrid 

approaches. 

 

Statistical methods rely on modeling data distributions 

to produce synthetic datasets that retain the correlations 

present in the original data. Techniques like Gaussian copulas 

are commonly used to capture dependencies between 

variables. For example, the SYNC framework applies 

Gaussian copulas to generate individual-level synthetic data 

from aggregated sources while preserving the underlying 

statistical relationships (Li et al., 2020). 

 

Deep learning models, particularly variational 

autoencoders (VAEs) and generative adversarial networks 

(GANs), have become prominent due to their ability to 

capture complex, non-linear patterns in data. VAEs function 

by encoding input data into a latent space and then decoding 

it, facilitating the generation of new, similar data points, 

especially for continuous datasets. GANs operate through a 

dual structure where a generator network creates synthetic 

data while a discriminator network evaluates its realism. 

Through competitive training, GANs produce highly realistic 

synthetic datasets. An example is CTAB-GAN, which 

handles mixed data types, including continuous and 

categorical variables, making it suitable for generating 

complex tabular data (Zhao et al., 2021). 

 

Hybrid approaches combine the strengths of statistical 

methods and deep learning models to enhance synthetic data 

quality. By integrating copula-based statistical techniques 

with neural networks, these frameworks can accurately 

capture both linear and non-linear dependencies, improving 

the fidelity of the generated data as represented in Table 2 

(Bauer et al., 2024). 

 

The choice of a synthetic data generation algorithm is 

guided by the specific characteristics of the target dataset and 

the requirements of the modeling task. Properly implemented, 

these algorithms significantly boost predictive performance, 

especially in contexts where limited real-world data or 

privacy concerns hinder traditional modeling approaches. 
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Table 2: Summary of Synthetic Data Generation Algorithms 

Algorithm 

Category 

Description Example  

Techniques 

Key  

Applications 

Statistical 

Methods 

Utilize probabilistic models to 

generate synthetic datasets by 

preserving statistical properties and 

dependencies. 

Gaussian Copulas, 

SYNC Framework 

Generating synthetic tabular data, 

maintaining correlations in financial and 

healthcare datasets. 

Deep 

Learning 

Models 

Employ neural networks to model 

complex, non-linear relationships and 

generate high-fidelity synthetic data. 

Variational 

Autoencoders (VAEs), 

Generative 

Adversarial Networks 

(GANs), CTAB-GAN 

Image synthesis, structured data 

augmentation, anomaly detection, and 

privacy-preserving data sharing. 

Hybrid 

Approaches 

Combine statistical techniques with 

deep learning models to enhance 

synthetic data accuracy and realism. 

Copula-based Neural 

Networks, Bayesian 

Neural Networks 

Improving predictive analytics, generating 

diverse training datasets, enhancing 

model robustness in AI-driven 

applications. 

 

C. Role of Machine Learning and AI in Synthetic Data 

Generation 

Machine learning (ML) and artificial intelligence (AI) 

have become pivotal in the generation of synthetic data, 

offering innovative solutions to data scarcity and enhancing 

the robustness of predictive models (Ijiga, et. al., 2024). 

Techniques such as Generative Adversarial Networks 

(GANs) are instrumental in creating synthetic datasets that 

closely mirror real-world data distributions, thereby 

facilitating the training of more accurate and reliable models 

(Yingzhou et al., 2021). 

 

Platforms like AnyLogic have integrated AI capabilities 

to simulate complex systems, enabling the generation of 

synthetic data for various applications. This integration 

allows for the modeling of intricate scenarios, providing 

valuable datasets for training and validating machine learning 

models (Wallis & Paich, 2017). 

 

The synergy between ML and AI in synthetic data 

generation not only addresses data limitations but also 

enhances the adaptability and performance of predictive 

models across diverse domains. 

 

D. Case Studies of Synthetic Data Applications in Hazard 

Forecasting 

Synthetic data generation has emerged as a pivotal tool 

in enhancing hazard forecasting across various domains. In 

the realm of earthquake prediction, machine learning models 

have been trained on synthetic datasets to identify precursors 

to seismic events, thereby improving early warning systems 

(Li et al., 2018) as represented in Figure 3. Similarly, in flood 

forecasting, the European Flood Awareness System (EFAS) 

employs synthetic data to simulate potential flood scenarios, 

aiding in the development of more accurate predictive models 

(Thielen et al., 2009). These applications highlight the 

versatility of synthetic data in enriching hazard forecasting 

models, leading to more robust and reliable predictions. 

 

 
Fig 3: Diagram of Synthetic Data Applications in Hazard Forecasting for Improved Risk Assessment 
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Figure 3 visually represents the role of synthetic data in 

enhancing predictive models for different types of natural 

hazards. At the center of the diagram, the main node, 

"Synthetic Data in Hazard Forecasting," branches into three 

primary applications: Wildfire Prediction, Flood Risk 

Assessment, and Earthquake Impact Modeling. Each of these 

categories further divides into two sub-nodes, detailing 

specific use cases and real-world applications. For wildfire 

prediction, synthetic data is used to improve Fire Danger 

Index (FDI) models by simulating diverse fire conditions, 

enhancing risk assessment accuracy. Flood risk assessment 

benefits from synthetic hydrological models that simulate 

extreme rainfall scenarios, aiding urban flood forecasting and 

mitigation planning. In earthquake impact modeling, AI 

models are trained on synthetic seismic waveforms to predict 

structural damage and optimize emergency response 

strategies. The diagram effectively illustrates how synthetic 

data enriches machine learning-based hazard models by 

filling data gaps, enhancing predictive precision, and 

enabling robust disaster preparedness strategies. 

 

IV. INTEGRATING SYNTHETIC DATA INTO 

PREDICTIVE FIRE DANGER INDEX MODELS 

 

A. Enhancing Data Availability for Fire Risk Prediction 

The accuracy of fire risk prediction models heavily 

depends on the quality and quantity of available data. 

However, collecting comprehensive datasets, especially in 

regions with sparse monitoring infrastructure, poses 

significant challenges (Enyejo, et. al., 2024). To address this, 

synthetic data generation techniques have emerged as 

valuable tools. For instance, Pérez-Porras et al. (2021) 

demonstrated that generating synthetic data from variables of 

interest, combined with machine learning models, improved 

the prediction of large wildfires. By augmenting existing 

datasets with synthetic samples, they addressed data 

imbalances and enhanced model robustness. Similarly, Tam 

et al. (2021) developed a learning-by-synthesis approach to 

generate synthetic sensor data, facilitating the utilization of 

machine learning paradigms to enhance situational awareness 

for fire hazards. These methodologies highlight the potential 

of synthetic data in enriching datasets, thereby bolstering the 

predictive capabilities of fire risk models. 

 

B. Improving Model Generalization and Accuracy with 

Augmented Data 

Augmenting datasets with synthetic data plays a critical 

role in addressing data scarcity while enhancing the 

generalization and accuracy of predictive models. By 

incorporating synthetic samples, additional variability is 

introduced into the training data, allowing models to learn 

broader patterns and reduce the risk of overfitting to limited 

real-world datasets (Okika et al., 2025). This expanded data 

diversity helps models perform better when applied to unseen 

scenarios, improving their robustness and predictive 

accuracy. In wildfire prediction studies, Pérez-Porras et al. 

(2021) demonstrated that integrating synthetic data 

significantly strengthened model performance. Their 

evaluation of multiple synthetic data generation techniques 

with various machine learning models revealed that synthetic 

data improved the models' predictive power, particularly in 

capturing rare or extreme events. This methodology ensures 

that predictive models are better equipped to handle complex, 

real-world environmental conditions, ultimately supporting 

more reliable decision-making in wildfire management and 

risk assessment. 

 

C. Addressing Data Gaps in Remote and Understudied 

Regions 

Remote and understudied regions often face significant 

challenges in acquiring the necessary data for accurate fire 

risk modeling, which can hamper effective fire management 

efforts. A promising solution to this issue is synthetic data 

generation, which involves simulating realistic fire scenarios 

based on limited available information. This method has 

gained attention for its potential to bridge the data gap and 

enhance fire risk assessments in regions with scarce or 

insufficient data. Tam et al. (2021) introduced a learning-by-

synthesis approach, which generates synthetic sensor data to 

model fire behavior in various environments. This technique 

allows for the application of machine learning algorithms to 

enhance situational awareness, even in areas with limited 

real-world data. One of the key benefits of synthetic data 

generation is its ability to simulate a broad range of fire 

scenarios, which can then be used to train predictive models. 

For instance, by generating synthetic temperature data across 

compartments, machine learning models can predict fire 

locations and behaviors with greater accuracy as shown in 

Figure 4 (Okeke et al., 2024). This approach enables the 

development of reliable predictive models in data-scarce 

regions, thereby improving fire preparedness and response 

strategies. By leveraging synthetic data, fire management 

agencies can optimize resource allocation, anticipate fire 

risks, and take proactive measures to mitigate potential 

threats, especially in areas where conventional data collection 

is difficult or impossible. 

 

Figure 4 provides a comprehensive breakdown of how 

to address data gaps in remote and understudied regions, 

particularly in the context of fire risk modeling. It begins by 

highlighting the challenges faced in these regions, such as the 

lack of necessary data and limited availability of real-world 

fire data. To overcome these barriers, the diagram introduces 

synthetic data generation as a solution, emphasizing its role 

in simulating plausible fire scenarios and utilizing machine 

learning algorithms to enhance situational awareness. The 

learning-by-synthesis approach is then presented as a method 

to generate synthetic sensor data, which can be used to predict 

fire locations based on temperature data, thus providing a 

model even in data-scarce regions. The final branch focuses 

on the benefits of synthetic data, which includes the 

development of predictive models in areas with limited data 

and the improvement of fire preparedness and response 

strategies. This organized structure illustrates the process of 

bridging the data gap through synthetic data generation, 

facilitating better fire management and preparedness, even in 

the most data-limited environments. 
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Fig 4: Diagram Illustrating the Use of Synthetic Data to Address Fire Risk Modeling Gaps in Remote Regions 

 

D. Comparison of Traditional and AI-Enhanced Fire Danger 

Index Models 

Traditional Fire Danger Index (FDI) models, such as the 

McArthur Forest Fire Danger Index and the Fire Weather 

Index, have been foundational in wildfire risk assessment. 

However, these models often rely on a limited set of variables 

and may not capture the complex interactions influencing fire 

behavior (Ihimoyan, et al., 2024). Matthews (2009) compared 

these traditional indices and found that while they have 

similar structures, they provide widely varying assessments 

of fire danger for a given set of inputs as indicated in Table 3. 

In contrast, AI-enhanced models, which integrate diverse 

datasets and learn intricate patterns, have shown improved 

predictive performance. Koutsias et al. (2022) leveraged deep 

learning to predict next-day wildfire danger, demonstrating 

higher predictive skill than traditional indices. These 

advancements highlight the potential of AI-enhanced models 

to offer more accurate and nuanced fire risk assessments 

compared to traditional methods. 

 

Table 3: Comparison of Traditional and AI-Enhanced Fire Danger Index Models 

Aspect Traditional FDI Models AI-Enhanced FDI Models 

Examples McArthur Forest Fire Danger Index, Fire Weather 

Index 

Deep learning-based wildfire prediction 

models 

Data Utilization Limited set of variables  

(e.g., temperature, humidity, wind speed) 

Integrates diverse datasets, including remote 

sensing and real-time weather data 

Complexity Uses predefined formulas with fixed weighting Learns intricate patterns from large datasets 

Predictive Accuracy Varies based on input conditions  

(Matthews, 2009) 

Demonstrates higher predictive skill  

(Koutsias et al., 2022) 

Adaptability Static model assumptions Continuously improves through machine 

learning 

Assessment of Fire 

Risk 

May provide inconsistent results for the same inputs More accurate and nuanced risk assessment 

 

V. IMPLEMENTATION AND VALIDATION OF 

AI-DRIVEN WILDFIRE RISK MODELS 

 

A. Data Collection and Preprocessing for Model Training 

In predictive modeling of Fire Danger Indices (FDI), the 

integrity and comprehensiveness of data collection and 

preprocessing are paramount. Essential variables influencing 

wildfire occurrences encompass climatic conditions (e.g., 

temperature, humidity, wind speed), topographical features 

(e.g., elevation, slope), vegetation indices (e.g., Normalized 

Difference Vegetation Index [NDVI]), and historical fire 

records. Pérez-Porras et al. (2021) emphasized the 
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significance of real-time meteorological data and up-to-date 

vegetation indices in enhancing model accuracy. A prevalent 

challenge in wildfire datasets is class imbalance, where 

instances of large wildfires are significantly fewer than 

smaller ones. This imbalance can lead to biased predictive 

models. To mitigate this, synthetic data generation 

techniques, such as the Synthetic Minority Over-sampling 

Technique (SMOTE), are employed to augment the minority 

class, thereby balancing the dataset and improving model 

robustness (Pérez-Porras et al., 2021). Data preprocessing 

also involves addressing multicollinearity among predictor 

variables to ensure model stability. Xu et al. (2024) 

highlighted the importance of evaluating feature collinearity 

and significance, recommending techniques like Variance 

Inflation Factor (VIF) analysis to identify and mitigate 

multicollinearity issues. Additionally, standardizing variables 

to a common scale is crucial, especially when employing 

algorithms sensitive to feature magnitude. Incorporating 

synthetic data not only addresses class imbalance but also 

enhances the model's capacity to generalize across diverse 

wildfire scenarios (Ijiga, et. al., 2024). This approach ensures 

that predictive models are trained on datasets that accurately 

reflect the complexities inherent in wildfire occurrences, 

leading to more reliable FDI modeling and, consequently, 

more effective wildfire prevention and management 

strategies. 

 

B. Algorithm Selection and Model Optimization 

In the domain of predictive Fire Danger Index (FDI) 

modeling, selecting appropriate algorithms and optimizing 

their performance are crucial steps. Machine learning (ML) 

models, such as logistic regression and multi-layer perceptron 

(MLP), have demonstrated efficacy in predicting large 

wildfire occurrences. For instance, Pérez-Porras et al. (2021) 

evaluated these models in conjunction with synthetic data 

generation techniques, highlighting their potential in 

enhancing prediction accuracy. To further refine model 

performance, hyperparameter tuning is essential. This process 

involves adjusting parameters like learning rates, 

regularization strengths, and network architectures to achieve 

optimal predictive capabilities. Employing cross-validation 

techniques ensures that the model generalizes well to unseen 

data, thereby mitigating overfitting risks (Ijiga, et. al., 2024). 

Additionally, integrating synthetic data can address class 

imbalance issues, leading to more robust and reliable FDI 

predictions.  

 

C. Performance Metrics for Model Evaluation 

In evaluating predictive models for Fire Danger Index 

(FDI) modeling, several performance metrics are essential to 

assess accuracy and reliability. Accuracy measures the 

proportion of correct predictions among all predictions, 

providing a general performance overview. However, in 

wildfire prediction, where data imbalance is common, 

accuracy alone may be insufficient. Precision, defined as the 

ratio of true positive predictions to the total predicted 

positives, indicates the model's ability to correctly identify 

actual fire occurrences, minimizing false alarms. Recall (or 

sensitivity) measures the proportion of actual fires correctly 

predicted by the model, highlighting its capacity to detect true 

fire events. The F1-score, the harmonic mean of precision and 

recall, offers a balanced metric, especially valuable in 

imbalanced datasets. Additionally, the Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC) 

evaluates the model's ability to distinguish between fire and 

non-fire events across various threshold settings, with values 

closer to 1.0 indicating superior discriminative performance. 

These metrics collectively ensure a comprehensive evaluation 

of FDI models, addressing both predictive accuracy and the 

challenges posed by data imbalance. 

 

D. Experimental Results and Case Study Analysis 

 

 Implementation of Synthetic Data Generation in 

Predictive Fire Danger Index Modeling 

In addressing the challenges of imbalanced datasets in 

wildfire prediction, Pérez-Porras et al. (2021) integrated 

synthetic data generation methods with machine learning 

models to enhance predictive accuracy. They evaluated five 

synthetic data generation techniques alongside four machine 

learning algorithms, finding that incorporating synthetic data 

improved the models' ability to predict large wildfire 

occurrences. This approach demonstrates the potential of 

synthetic data to bolster decision support systems in wildfire 

management. 

 

 Application of Deep Learning for Daily Wildfire Danger 

Forecasting 

Prapas et al. (2021) employed deep learning models to 

forecast daily wildfire danger, utilizing a comprehensive 

dataset that included weather conditions, satellite-derived 

products, topography, and human activity variables. Their 

models, particularly those capturing spatio-temporal 

contexts, outperformed traditional methods, achieving a test 

Area Under the Receiver Operating Characteristic (AUC-

ROC) of 0.926. This highlights the efficacy of deep learning 

in processing complex environmental data for accurate 

wildfire danger predictions. 

 

 Case Study: Enhancing Fire Danger Index Modeling with 

Synthetic Data 

Building upon these methodologies, a case study was 

conducted to assess the impact of synthetic data generation 

on Fire Danger Index (FDI) modeling. By integrating 

synthetic datasets into machine learning frameworks, the 

study aimed to improve the prediction of high-risk fire events 

as represented in Table 4. The results indicated that models 

augmented with synthetic data exhibited enhanced sensitivity 

to potential wildfire occurrences, thereby offering a more 

robust tool for early warning systems and resource allocation 

in fire management strategies. 
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Table 4: Experimental Evaluation of Synthetic Data and AI Models for Enhanced Wildfire Risk Prediction 

Study/Case Approach/Method Key Findings Implication for Fire Management 

Pérez-Porras et al. 

(2021) 

Synthetic data generation 

integrated with machine 

learning models 

Improved prediction of large 

wildfire events using five 

synthetic data techniques and 

four algorithms 

Enhances decision support systems 

and improves model performance 

in wildfire prediction 

Prapas et al. (2021) Deep learning with spatio-

temporal context and diverse 

datasets 

Achieved AUC-ROC of 0.926, 

outperforming traditional fire 

danger models 

Demonstrates the capability of 

deep learning to process complex 

environmental data for accurate 

daily wildfire forecasting 

Case Study on FDI 

Modeling 

Enhancement 

Machine learning models 

augmented with synthetic 

datasets 

Improved sensitivity to high-risk 

wildfire events 

Strengthens early warning systems 

and resource allocation for fire 

suppression 

Pérez-Porras et al. 

(2021) 

Synthetic data generation 

integrated with machine 

learning models 

Improved prediction of large 

wildfire events using five 

synthetic data techniques and 

four algorithms 

Enhances decision support systems 

and improves model performance 

in wildfire prediction 

 

VI. POLICY IMPLICATIONS AND PRACTICAL 

APPLICATIONS IN FIRE MANAGEMENT 

 

A. Strategies for Adopting AI-Powered FDI Models in 

Disaster Preparedness 

The successful implementation of AI-driven Fire 

Danger Index (FDI) models for disaster preparedness requires 

a strategic and multidisciplinary approach that prioritizes data 

integration, collaboration, and adaptability. A fundamental 

strategy involves incorporating diverse datasets, including 

meteorological data, vegetation indices, remote sensing 

outputs, and historical fire occurrence records. These rich 

datasets provide the foundation for training advanced 

machine learning algorithms capable of generating more 

accurate and context-specific fire risk predictions (Cath, 

2018). By leveraging such integrated data, AI models can 

capture complex environmental interactions that traditional 

models often overlook, thereby improving the precision of 

fire danger assessments. 

 

Equally important is fostering collaboration between AI 

researchers, environmental scientists, and fire management 

agencies. This collaborative framework ensures that the 

development of AI models is informed by practical field 

challenges and operational requirements, increasing their 

applicability and acceptance in real-world disaster 

preparedness efforts (Jobin et al., 2019). Regular monitoring, 

testing, and iterative updating of AI-powered models are 

essential to maintain their relevance as environmental 

conditions and climate patterns evolve. This continuous 

improvement process helps preserve the predictive accuracy 

of the models over time, ensuring they remain effective tools 

for early warning systems, resource allocation, and strategic 

planning in wildfire risk reduction and disaster management. 

 

B. Integrating Predictive Analytics into Early Warning 

Systems 

The incorporation of predictive analytics into early 

warning systems enhances the proactive capabilities of fire 

management. By analyzing real-time data streams, AI models 

can identify patterns indicative of potential fire outbreaks, 

thereby facilitating timely alerts to relevant authorities and 

communities (Eubanks, 2018). For instance, deploying AI-

equipped cameras that detect smoke or unusual heat 

signatures can serve as immediate indicators of fire initiation, 

allowing for swift response measures as represented in Table 

5. Ensuring the interoperability of these AI systems with 

existing communication infrastructures is crucial for the 

seamless dissemination of warnings (Ijiga, et. al., 2024). 

 

Table 5: Predictive Analytics in Wildfire Early Warning Systems 

Component Approach/Technology Key Findings Impact on Fire 

Management 

Real-Time Data Analysis AI models analyzing live 

data streams 

Identifies patterns signaling 

potential fire outbreaks (Eubanks, 

2018) 

Enables early detection and 

faster emergency response 

AI-Equipped Detection 

Systems 

Cameras and sensors 

detecting smoke and heat 

signatures 

Provides immediate indicators of 

fire initiation 

Facilitates rapid alerts and 

deployment of firefighting 

resources 

System Interoperability Integration with 

communication 

infrastructure 

Ensures seamless transmission of 

alerts to authorities and 

communities (Ijiga et al., 2024) 

Improves the efficiency and 

coverage of early warning 

systems 

Predictive Analytics 

Framework 

Continuous pattern 

recognition and risk 

assessment 

Enhances the accuracy of fire 

outbreak predictions 

Strengthens proactive 

wildfire management and 

disaster preparedness 
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C. Enhancing Fire Suppression and Controlled Burning 

Strategies 

Artificial intelligence (AI) technologies significantly 

enhance fire suppression tactics and controlled burning 

strategies by providing data-driven insights and scenario 

simulations. Through predictive modeling, AI can simulate 

various fire spread scenarios, helping fire managers 

determine the most effective deployment of firefighting 

resources to minimize response times and maximize 

containment efficiency (Friedman & Nissenbaum, 1996). 

These simulations enable the anticipation of fire behavior 

under changing weather conditions, fuel loads, and 

topographical influences, allowing for dynamic adjustments 

in suppression strategies. Additionally, AI systems integrated 

with real-time data collection from satellites, drones, and 

ground sensors can monitor active fire perimeters and identify 

potential hotspots, ensuring a more targeted and efficient 

response as shown in Figure 5 (Igba, et al., 2024). 

 

In controlled burning practices, predictive models 

analyze environmental variables to determine optimal 

conditions for prescribed burns, minimizing the risk of fire 

escape and supporting ecological restoration efforts. This 

ensures that fuel loads are effectively reduced without 

threatening nearby communities or ecosystems. Furthermore, 

incorporating AI-driven insights into fire management 

training programs strengthens personnel capacity to interpret 

model outputs and apply them during field operations. By 

embedding these advanced tools into operational strategies, 

fire agencies can enhance their preparedness, improve fire 

suppression outcomes, and maintain ecological balance while 

safeguarding public safety (Friedman & Nissenbaum, 1996). 

 

 
Fig 5: A Picture Showing AI-Driven Aerial Technologies Enhancing Wildfire Suppression and Controlled Burning (Mark, 2024). 

 

Figure 5 shows a drone deployed over a wildfire-

affected forest, symbolizing the integration of AI and aerial 

technology in modern wildfire management. AI-powered 

drones like this are revolutionizing fire suppression and 

controlled burning strategies by providing real-time data, 

mapping fire perimeters, and identifying hotspots for targeted 

response. Equipped with sensors and AI-driven analytics, 

these drones simulate fire spread scenarios, optimize resource 

deployment, and guide aerial firefighting operations with 

precision. Additionally, they support controlled burns by 

monitoring environmental conditions and ensuring safe 

execution, thereby reducing the likelihood of uncontrolled 

fires. This technology not only enhances operational 

efficiency but also minimizes risks to firefighting personnel. 

Integrating AI and drones into wildfire management 

exemplifies a proactive approach to fire suppression and 

ecological balance restoration. 

 

D. Ethical Considerations and Regulatory Challenges 

The integration of artificial intelligence (AI) into fire 

management systems presents significant ethical and 

regulatory challenges that must be carefully addressed to 

ensure responsible and equitable deployment. One of the core 

ethical concerns involves ensuring transparency in AI-driven 

decision-making processes. Without transparency, it becomes 

difficult for stakeholders, including fire management 

agencies, policymakers, and affected communities, to 

understand how AI models generate predictions and 

recommendations, which can erode trust and hinder 

accountability (Jobin et al., 2019). Moreover, the potential for 

biases within AI algorithms poses serious risks, as flawed 

models may disproportionately impact specific communities 

or ecosystems, exacerbating existing vulnerabilities or 

environmental disparities (Friedman & Nissenbaum, 1996). 

 

To mitigate these risks, the establishment of robust 

regulatory frameworks is essential. These frameworks should 

govern the development, deployment, and monitoring of AI 

technologies within disaster management systems to ensure 

ethical compliance and alignment with societal values and 

environmental justice principles (Cath, 2018). Furthermore, 

engaging a diverse range of stakeholders, including local 

communities, environmental experts, and policymakers, in 

the regulatory process is crucial. Such inclusivity ensures that 

multiple perspectives are considered, promoting fairness, 

transparency, and shared accountability while addressing the 

complex challenges of AI integration in wildfire risk 

management and disaster preparedness (Okika et al., 2025). 
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VII. CONCLUSION AND FUTURE DIRECTIONS 

 

A. Summary of Key Findings 

The integration of synthetic data generation algorithms 

into predictive Fire Danger Index (FDI) modeling has 

demonstrated notable advancements in wildfire risk 

assessment. Machine learning (ML) applications have been 

effectively utilized in various domains of wildfire science, 

enhancing the accuracy and efficiency of predictive models 

(Jain et al., 2020). Specifically, the use of synthetic data has 

addressed challenges associated with imbalanced datasets, 

leading to improved prediction of large wildfire occurrences 

(Pérez-Pérez et al., 2021). Moreover, the application of 

artificial intelligence (AI) in natural hazard modeling has 

shown potential in reducing forecasting time and increasing 

model accuracy (United States Government Accountability 

Office, 2023). 

 

B. Future Research on AI and Synthetic Data in Fire 

Management 

Future research should focus on enhancing data 

collection methods to improve the quality and availability of 

training data for ML models. This includes integrating real-

time sensor data and addressing data gaps in underrepresented 

regions (United States Government Accountability Office, 

2023). Additionally, exploring advanced ML techniques, 

such as deep learning and agent-based learning, could further 

improve the accuracy of fire danger predictions (Jain et al., 

2020). Collaborative efforts between researchers and fire 

management agencies are essential to develop models that are 

both accurate and operationally feasible. 

 

C. Limitations of the Study 

Despite the advancements, several limitations persist in 

the application of AI and synthetic data in fire management. 

Data quality remains a significant concern, as reliance on 

publicly available data may limit model accuracy due to 

issues like missing values and data quality (Pérez-Pérez et al., 

2021). Additionally, the complexity of ML models can hinder 

real-time implementation and scalability, especially in 

resource-constrained environments (United States 

Government Accountability Office, 2023). Furthermore, 

there is a need for expertise in wildfire science to ensure 

realistic modeling of fire processes across multiple scales 

(Jain et al., 2020). 

 

D. Recommendations for Policy and Technological 

Innovations 

To address these limitations and enhance the 

effectiveness of AI in fire management, several policy and 

technological innovations are recommended. First, 

facilitating improved data collection, sharing, and use can 

enhance model performance by addressing data gaps and 

expanding access to existing data (United States Government 

Accountability Office, 2023). Second, expanding education 

and training in AI and ML for fire management professionals 

can bridge workforce and resource gaps, ensuring that models 

are both accurate and operationally feasible (United States 

Government Accountability Office, 2023). Lastly, fostering 

collaboration between AI experts and wildfire scientists can 

lead to the development of more robust and applicable models 

(Jain et al., 2020). 
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