

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3017

Comparison of Modified Booth Multiplier

Techniques

Meghana M N1; Mallikarjuna R Mulimani2; Shiva prasad A S3;

Venkatesh R4; Vignesh D5

1Assistant Professor, 2, 3, 4,5Students

1, 2, 3, 4,5Department of Electronics and Communication Engineering Maharaja Institute of Technology

Thandavapura (MITT) Mysuru, India

Publication Date: 2025/06/03

Abstract: Booth's Algorithm is a multiplication algorithm used to perform signed binary multiplication efficiently. It

minimizes the number of addition and subtraction operations by encoding runs of consecutive ones in the binary

representation of a multiplier. This algorithm uses a technique called radix-4 encoding, which reduces the number of

required arithmetic operations compared to standard long multiplication. Booth's Algorithm is widely used in computer

arithmetic, especially in hardware multipliers, due to its ability to handle both positive and negative numbers uniformly.

This paper provides an overview of the algorithm's working mechanism, its advantages, and its significance in digital

computing.

Keywords: Booth's Algorithm, Signed Binary Multiplication, Radix-4 Encoding, Computer Arithmetic, Hardware Multipliers, Digital
Computing, Arithmetic Operations Optimization, Binary Multiplier, Multiplication Algorithm, Run-Length Encoding.

How to Cite: Meghana M N; Mallikarjuna R Mulimani; Shiva prasad A S; Venkatesh R; Vignesh D (2025) Comparison of Modified

Booth Multiplier Techniques. International Journal of Innovative Science and Research

Technology, 10(5), 3017-3022. https://doi.org/10.38124/ijisrt/25may1725

I. INTRODUCTION

Booth’s algorithm is a widely used algorithm to reduce the

number of partial products in multiplication, thereby

increasing computational efficiency and speed. It does so by

encoding binary numbers into groups of bits, enabling
operations to skip redundant calculations by handling multiple

bits at once. Reduces the number of addition operations,

especially useful for signed binary numbers, making it highly

effective in handling two’s complement numbers. By generating

fewer partial products, Modified Booth reduces hardware

complexity and overall power consumption, making it more

suitable for VLSI designs.

II. METHODOLOGY

In this study, various Modified Booth Multiplier
(MBM) techniques have been selected for comparative

analysis, including the conventional MBM, Radix-4 MBM,

Low Power MBM, and High-Speed MBM architectures.

Each multiplier design was modeled and implemented using

Verilog HDL and simulated using the Xilinx Vivado

simulation environment to verify functional correctness. All

designs were synthesized targeting the same FPGA device to

ensure uniformity in performance evaluation. A consistent set

of random and boundary condition input vectors was applied

through a standardized test bench for all multiplier

implementations. The performance of each technique was

assessed based on key parameters such as area utilization

(measured in slices), total Power consumption, critical path

delay, and maximum operating frequency. Synthesis reports

generated by the Vivado tool provided quantitative data for
comparison. Additionally, the results were organized into

comparative tables and graphical representations to clearly

illustrate the trade-offs and advantages of each technique.

This methodology ensures a fair, consistent, and

comprehensive evaluation of different Modified Booth

Multiplier architectures under identical design constraints.

Through a clean and intuitive interface. Once an image is

uploaded, the backend processes it, performs prediction using

the deep learning model, and returns the results in real-time,

including the predicted tumor type and heatmap visualization.

The complete system is designed to aid doctors and users in
early and efficient brain tumor detection, making it accessible

via local or cloud-based deployment.

 Booth Algorithm

Booth algorithm gives a procedure for multiplying

binary integers in signed 2’s complement representation in

efficient way, i.e.,less number of additions/subtractions

required. It is also used to speed up the performance of the

multiplication process.

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25may1725

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3018

Fig 1 Flow Chart of Booth Algorithm

The Following Flowchart Outlines the Basic Steps of

the Algorithm:

• Step 1
Begin by setting the value of the register “A = 0” to the

first operand and the value of the Previous state register “P =

0” to the second operand.

• Step 2

Check the value of the Least Significant Bit (LSB) of

the multiplier “Y” i.e. Y0 and compare With the value of
register “P”, if

 Y0, P = 00 or 11 – Perform Arithmetic Right Shift
 Y0, P = 10 perform A = A – X and then Arithmetic Right

Shift

 Y0, P = 01 perform A = A + X and then Arithmetic Right

Shift

• Step 3

Check if the value of Count “N = 0”, If it is, the

algorithm is complete and the value in the Register “Y” is the

result. If the value is not zero, go back to step 2.

III. MODULES AND ITS IMPLEMENTATION

 Booth’s Encoding
Booth encoding is a method of recoding binary numbers

to optimize the multiplication process. It simplifies handling

negative numbers and reduces the number of
addition/subtraction operations required.

 Radix 4 Booth’s Encoding

This examines 3 bits at a time, the current pair of bits

from the multiplier and an additional bit from the previous
position generating partial product

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3019

Fig2 Flow Chart of Booth Encoding (Radix 4)

The overall working of the algorithm can be divided into

the following stages:

 Radix-4 Booth Encoding
 Partial Product Generation

 Wallace Tree Reduction

 Pipeline Stages

 Final Addition
 FSM

All modules are written in Verilog and tested using a

simulation testbench. Each stage is validated individually and

then integrated

Fig 3 Modified Booth Algorithm Block

 Radix-4 Booth Encoding:

Group bits in sets of three to reduce partial products,

with each group encoding a multiplier factor (0, ±1, ±2).

 Partial Product Generation:

Generating partial products by shifting and adjusting the

multiplicand based on Booth encoding.

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3020

 Wallace Tree Reduction:
Use of Wallace tree to parallelly reduce partial products

to a minimum number of rows. Each stage reduces the

number of rows of bits by grouping three bits at the same

position into a sum and carry.The process repeats until only

two rows of bits remain, representing the final sum and carry.

 Pipeline Stages:

Insert pipeline stages to enhance throughput, allowing

multiple operations simultaneously.

 Final Addition:

Sum the final two rows with a fast adder to obtain the
final product.

 FSM:

In a MOORE FSM outputs are determined only on the

current state.The output remains constant as long the FSM

stasys in the same state.

IV. ALGORITHM

 Booth’s Multiplication Algorithm

Booth’s algorithm is used to minimize the number of
partial products by encoding the multiplier.

 Radix-4 Booth Encoding

Instead of checking every single bit, radix-4 considers 2

bits at a time and uses a third bit (previous LSB) to form a 3-

bit group. The groups map to operations like 0, ±1, or ±2 times
the multiplicand. Encoding Table

Group (Mult[2i+1:2i-1])Operation 000, 111 0

001, 010+1 * M

011+2 * M

100-2 * M

101, 110-1 * M

This reduces the number of partial products,

improving performance.

 Wallace Tree Structure:

Wallace Tree is a hardware- optimized method for

summing multiple partial products in a reduced number of

steps.

Stages:

 Uses full adders (3:2 compressors) and half adders (2:2

compressors).

 Operates in parallel to reduce delay.

 Results in only two rows: sum and carry. These are then

passed to the final adder stage

Fig 4 Simulation of Modified 16-bit Radix-4 Booth Multiplier

 Carry Lookahead Adder (CLA):

CLA eliminates the ripple effect of carries by

computing them in parallel. Principle:

 Generate (G) = A & B

 Propagate (P) = A ^ B

 Carry[i+1] = G[i] + P[i]*Carry[i]

This technique ensures fast summation of final sum and

carry rows.

 System Architecture

 Booth Encoder: Converts the multiplier to partial

product operations.

 Partial Product Generator: Shifts and signs multiplicand

based on Booth output.

 Wallace Tree: Compresses all partial products.
 CLA: Performs final summation.

Each module is pipelined for performance.

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3021

 Verilog RTL Design:

Includes detailed Verilog modules:

 boothalgm.v

 wallactreeee.v

 fastadderrr.v

 datapath0001.v

 booth_wallace_cla_tb.v

These are verified via simulation.

Fig 5 Dynamic and Static Energy

 We reduced dynamic and static energy consumption, with

energy reductions ranging from 69% to 78%

 Testbench and Simulation

 The Testbench Simulates Various Combinations:

 Positive * Positive

 Negative * Positive

 Negative * Negative
 Edge cases (0, max/min values) Simulation confirms

correctness and speed.

V. RESULTS AND DISCUSSION

 Expected Outcome

 By applying pipelining technique we can observe

increase in the speed of operation.

 Minimize dynamic power consumption.

 Analyse the number of Logic elementsthat would be

required.

 Displaying the overall simulation of modified 16-bit

Radix-4 booth multiplier using Vivado IDE

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1725

IJISRT25MAY1725 www.ijisrt.com 3022

Fig 6 Data Path Delay

 We obtained data path delay 16.504ns.

VI. CONCLUSION

This project successfully demonstrates a fast, pipelined

16- bit signed multiplier using Booth encoding, Wallace tree,

and CLA. The design is modular, extensible, and performs

well in simulation. It can be integrated into larger digital

processing units.This project successfully demonstrates the

design and implementation of a high-speed, low-power 16- bit

signed multiplier using Modified Booth Encoding (Radix-4),
Wallace Tree reduction, and a Carry Lookahead Adder (CLA)

architecture. By leveraging pipelining and hardware-efficient

techniques, the proposed system achieves significant

improvements in speed, power efficiency, and scalability.

Simulation results validate the correctness and

performance of the design, showcasing an effective reduction

in dynamic and static power consumption—

Achieving energy savings up to 78%. The max

delay observed was 16.504 ns, confirming the high-speed
operation of the multiplier.

The modular nature of the design allows for easy

scalability and integration into larger digital systems, such as

image processing units, embedded AI accelerators, and real-

time video processing systems. These characteristics make

the proposed multiplier architecture highly suitable for

modern VLSI and low-power computing environments. In

summary, the implemented system meets its objectives by

optimizing multiplication operations through advanced

encoding and hardware design strategies, offering a balanced

trade-off between speed, power, and area.

REFERENCES

[1]. Booth, A. D. (1951). “A signed binary multiplication

technique.” Quarterly Journal of Mechanics and

Applied Mathematics.

[2]. Wallace, C. S. (1964). “A Suggestion for a Fast

Multiplier.” IEEE Transactions on Electronic

Computers.

[3]. Mano, M. M., & Ciletti, M. D. (2017). Digital Design:

With an Introduction to the Verilog HDL.

[4]. Weste, N. H. E., & Harris, D. M. (2010). CMOS VLSI
[5]. Design: A Circuits and Systems Perspective.

[6]. Patterson, D. A., & Hennessy, J. L. (2017). Computer

Organization and Design RISC-V Edition.

[7]. Verilog IEEE Standard 1364-2005.

[8]. Rabaey, J. M. (2003). Digital Integrated Circuits: A

Design Perspective.

[9]. Bhasker, J. (2003). A Verilog HDL Primer.

[10]. Dandamudi, S. (2005). Fundamentals of Computer

Organization and Design.

[11]. IEEE Xplore digital library research articles on

multiplier architectures.

https://doi.org/10.38124/ijisrt/25may1725
http://www.ijisrt.com/

	II. METHODOLOGY
	The Following Flowchart Outlines the Basic Steps of the Algorithm:
	III. MODULES AND ITS IMPLEMENTATION
	IV. ALGORITHM
	 System Architecture
	 Verilog RTL Design:
	V. RESULTS AND DISCUSSION
	 Expected Outcome

