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Abstract: Achieving self-sufficiency in food production remains a key priority for the Nigerian government, with significant 

progress made in increasing yields of staple crops such as rice, maize, and cassava. However, optimizing water resources 

remains a critical challenge for sustainable agriculture. Evapotranspiration (ET) the combined process of water 

evaporation from soil and plant transpiration plays a crucial role in efficient irrigation planning and water resource 

management. Traditional ET estimation methods require complex mathematical models, which often struggle with 

accuracy due to their limited ability to capture intricate temporal patterns and dependencies in environmental data. This 

study develops a deep learning-based mid-and-long-term evapotranspiration forecasting model using Long Short-Term 

Memory (LSTM) networks. Unlike conventional models, LSTMs excel at capturing long-range dependencies in time-series 

data, making them well-suited for ET prediction. Historical evapotranspiration data from Ogwashi-Uku, Southern Nigeria, 

spanning January 3, 2023, to December 22, 2023 (daily forecast), and January 1, 2003, to December 1, 2024 (monthly 

forecast), were used for model training and evaluation. The experimental results demonstrate high predictive accuracy, 

with a Mean Squared Error (MSE) of 0.0034, Root Mean Squared Error (RMSE) of 0.0583, and Mean Absolute Error 

(MAE) of 0.0433, leading to an overall model accuracy of 95.68% for daily evapotranspiration and MSE of 0.0005, RMSE 

of 0.0222, and MAE of 0.0182 for monthly evapotranspiration. 
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I. INTRODUCTION 

 

Evapotranspiration (ET) is the process by which water 

moves from the land surface to the atmosphere through 

evaporation and plant transpiration. This process plays a 

fundamental role in the water cycle, influencing agricultural 

productivity, climate modeling, and water resource 

management. Various methods have been developed to 

estimate ET, including the Penman-Monteith, Hargreaves, 

and Priestley-Taylor methods. However, these methods 

often demand extensive field data, are labor- intensive, 

prone to errors, and require significant computational 

power. With advancements in technology, Computer-Aided 

Design (CAD) has emerged as a promising tool for 

simulating and analyzing ET processes. CAD software, such 

as Autodesk AutoCAD, Bentley Systems MicroStation, and 

ESRI ArcGIS, has been employed to model land surfaces, 

incorporating variables like topography, soil type, and 

vegetation cover. These models help simulate ET processes 

by factoring in meteorological elements like solar radiation, 

temperature, humidity, and wind speed. 

 

Despite the growing application of CAD in ET 

computation, the manual approach to ET estimation remains 

fraught with challenges. Globally, approximately two-thirds 

of the average annual rainfall of 750 mm is lost through 

evapotranspiration, making it a major component of the 

terrestrial hydrological cycle. The complexity of this process 

poses significant challenges in hydrological analysis, as 

errors in ET estimation can adversely affect stream flow 

simulation and broader water balance assessments. 
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Accurate characterization of ET is crucial for 

understanding terrestrial ecosystems and predicting the 

impacts of climate change and land use alterations. In 

agricultural settings, precise ET estimates are essential for 

optimizing water use, ensuring crops receive adequate 

moisture for growth, and improving overall irrigation 

efficiency. 

 

Crops require precise amounts of water to thrive, and 

any imbalance whether excessive or insufficient can lead to 

reduced yields. Evapotranspiration directly influences soil 

moisture, impacting both crop health and farm operations. 

Estimating ET helps determine crop water demands and 

informs irrigation decisions. However, traditional methods of 

estimating ET rely on manual data recording, which 

introduces human error, particularly in experimental 

agricultural farms or data centers. The inherent challenges of 

manual ET computation include selecting the appropriate 

method based on available data, navigating complex 

mathematical formulas, and enduring the time-consuming 

nature of the process. These challenges highlight the need for 

a more efficient, automated approach to ET estimation. 

 

To address these limitations, this study employs a deep 

learning-based model to forecast ET over mid- to-long-term 

periods. Deep learning, particularly LSTM networks, has 

proven to be highly effective in handling time-series data, 

capturing long-range dependencies, and improving 

predictive accuracy. Unlike traditional ET estimation 

techniques that rely on static equations, LSTMs dynamically 

learn from historical ET data, adapting to changing climate 

and environmental conditions. This capability makes deep 

learning an invaluable tool for precise, scalable, and real-

time ET forecasting, particularly in regions with limited 

weather station data like Ogwashi-Uku in Southern Nigeria. 

 

A significant outcome of this study is the development 

of a web-based application designed for real- time ET 

forecasting and estimation. By integrating deep learning-

based forecasting into a user-friendly interface, this system 

bridges the gap between complex data analysis and practical 

agricultural applications. This outcome aligns with the 

broader goal of achieving efficient and sustainable water use 

in agriculture. 

 

The remainder of this study is structured as follows: 

Section 2 reviews related works, highlighting existing 

research and methodologies relevant to evapotranspiration 

forecasting. Section 3 details the materials and methods 

employed in this study, including data sources, model 

development, and computational techniques. Section 4 

presents the results, followed by an in-depth discussion of 

findings, model performance, and comparative analysis. 

Finally, Section 5 summarizes the key conclusions, 

highlights the study’s contributions, and suggests directions 

for future research. 

 

 Study Area 

Ogwashi-Uku is a historic town situated in the 

Aniocha South Local Government Area of Delta State, 

Nigeria. Located about 30 kilometers north of the state 

capital, Asaba, its coordinates (6.1833° N, 6.5333° E) place 

it at a crossroads between neighboring towns like Agbor, 

Ubulu-Uku, and Obior. This strategic positioning has long 

made it a hub for commerce and cultural connections. The 

economic and agricultural significance of Ogwashi-Uku 

makes accurate evapotranspiration (ET) forecasting crucial 

for sustainable water resource management and crop 

productivity. The town experiences a tropical climate, 

characterized by high temperatures, humidity, and distinct 

wet and dry seasons, which influence its agricultural system. 

However, climate variability has made it increasingly 

difficult for farmers to predict water availability, leading to 

potential water shortages, inefficient irrigation practices, and 

declining crop yields. 

 

The region’s flat, low-lying terrain and proximity to 

rivers, including the Aniocha River, provide both 

opportunities and challenges for irrigation. While natural 

water sources are available, the absence of real-time 

evapotranspiration data makes it difficult to optimize water 

usage efficiently. As a result, farmers either over-irrigate or 

under-irrigate, both of which have negative consequences on 

soil health and crop growth. Accurate ET forecasting can 

provide data-driven insights, enabling farmers to determine 

precise water requirements, thereby reducing water wastage 

and enhancing irrigation efficiency. 

 

 
Fig 1 (Source: Nigeria Map) 

 

In Ogwashi-Uku, where cassava, yams, maize, and 

palm oil production are key contributors to its economy, 

maintaining optimal soil moisture levels is essential for 

maximizing yields. Excessive evaporation during the dry 

season can lead to soil dehydration, while high transpiration 

rates can stress crops, reducing productivity. ET forecasting 

can predict these conditions in advance, allowing farmers to 

adjust irrigation schedules accordingly, thereby ensuring 

optimal growing conditions for crops. 

 

During the wet season (April to October), rainfall is 

abundant, but without proper water management, much of it 

is lost through runoff and inefficient storage. Forecasting 

evapotranspiration would support better water conservation 

strategies, ensuring sufficient water availability during the 

dry season when irrigation is most needed. Additionally, 

early warning systems based on ET predictions can help 

mitigate drought risks, providing farmers and policymakers 

with actionable data for adaptive water management 

policies. 
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Beyond agriculture, evapotranspiration forecasting 

plays a critical role in hydrological planning. The presence 

of rivers and streams makes Ogwashi-Uku susceptible to 

flooding, particularly during heavy rainfall. By 

understanding evaporation rates and soil moisture levels, 

authorities can better predict flood risks and implement 

effective land-use planning and environmental conservation 

measures to reduce the impact of extreme weather events. 

 

With an estimated population of 50,000, food security 

remains a pressing concern for the town. Erratic weather 

patterns, unpredictable water availability, and rising 

agricultural demands call for a scientific, data-driven 

approach to farming. Traditional knowledge alone is no 

longer sufficient to sustain consistent agricultural output, 

especially in light of climate change-induced shifts in 

rainfall patterns. To address these challenges, deep learning-

based evapotranspiration forecasting models offer a scalable 

and effective solution. 

 

II. RELATED WORKS 

 

Singh et al. (2022) developed Evapotranspiration 

Modeling using CAD and Machine Learning Algorithms. 

This study used CAD and machine learning algorithms to 

model evapotranspiration for a watershed in India. The 

results showed that the CAD-machine learning model was 

able to accurately estimate evapotranspiration, with a root 

mean square error (RMSE) of 0.10 mm/day. 

 

Kumar et al. (2020) developed a model using CAD for 

Evapotranspiration Simulation in Irrigated Agriculture using 

IoT Sensors. This study used CAD and IoT sensors to 

simulate evapotranspiration for an irrigated agricultural area 

in the United States. The results showed that the CAD-IoT 

model was able to accurately estimate evapotranspiration, 

with an RMSE of 0.12 mm/day. 

 

Zhang et al. (2020) proposed CAD base model for 

Evapotranspiration Simulation in Watersheds using GIS and 

Remote Sensing Data. This study used CAD, GIS, and 

remote sensing data to simulate evapotranspiration for a 

watershed in China. The results showed that the CAD-GIS-

remote sensing model was able to accurately estimate 

evapotranspiration, with an RMSE of 0.10 mm/day. 

 

Liu et al. (2021) also developed a model for 

Evapotranspiration Estimation using CAD and Deep 

Learning Algorithms. This study used CAD and deep 

learning algorithms to estimate evapotranspiration for an 

agricultural area in Australia. The results showed that the 

CAD-deep learning model was able to accurately estimate 

evapotranspiration, with an RMSE of 0.12 mm/day. 

 

Chen et al. (2021) made used of Application of CAD for 

Evapotranspiration Simulation in Urban Areas using Building 

Information Modeling (BIM). This study used CAD and 

BIM to simulate evapotranspiration for an urban area in the 

United States. The results showed that the CAD-BIM model 

was able to accurately estimate evapotranspiration, with an 

RMSE of 0.10 mm/day. 

Liu et al. (2016) developed a model for 

Evapotranspiration Estimation using CAD and Remote 

Sensing. This study used CAD and remote sensing to 

estimate evapotranspiration for a agricultural area in 

Australia. The results showed that the CAD-remote sensing 

model was able to accurately estimate evapotranspiration, 

with an RMSE of 0.15 mm/day 

 

Abedi-Koupai et al. (2022) investigated the use of 

time series models for evapotranspiration (ET) forecasting. 

The study aimed to develop an efficient ET estimation 

model using statistical methods to support hydrological 

processes, irrigation planning, and water resource 

management. The authors applied the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) 

model to analyze ET data from the synoptic station of 

Tabriz, comparing its performance with conventional 

estimation techniques such as the FAO Penman-Monteith 

and Hargreaves methods. Several time series models, 

including ARMA, ARIMA, and GARCH, were tested, with 

GARCH demonstrating the highest predictive accuracy by 

effectively capturing ET fluctuations over time. 

 

Gong et al. (2023) conducted a study on mid-and-

long-term evapotranspiration (ET) forecasting for winter 

wheat in China, aiming to enhance water-use efficiency and 

irrigation management. The research tackled the mismatch 

between crop water requirements and precipitation timing, 

which poses challenges in agricultural planning. Using 

temperature-based models like Hargreaves (HG), McClound 

(MC), Makkink (MK), Temperature Penman-Monteith 

(PMT), Priestley-Taylor (PT), and a hybrid Penman-

Monteith Forecast (PMF) model, the study developed 

region-specific ET forecasting techniques. The author 

adopted a crop coefficient approach to align ET predictions 

with actual field conditions and calibrated model parameters 

using the least squares method. The study identified HG and 

PMF models as the most effective for short- and medium-

term forecasts, while MC, PT, and PMF models performed 

better for long-term predictions. Their findings underscored 

the spatial and temporal variability in ET forecasting, 

emphasizing the need for adaptive modeling strategies 

tailored to specific climatic zones. The results demonstrated 

that forecast model calibration significantly improves 

accuracy, reducing root mean square error (RMSE) and 

enhancing prediction reliability. However, forecast error 

increased with longer prediction periods, highlighting the 

challenges of long-term ET forecasting. Despite this, the 

models effectively predicted ETc for winter wheat, 

particularly in Northern China, where irrigation demand is 

high. 

 

III. MATERIALS AND METHOD 

 

The system architecture as shown in Figure 2 begins 

with the collection of evapotranspiration data, available in 

both daily and monthly formats. Each dataset consists of 

multiple parameters essential for forecasting. These raw data 

undergo preprocessing, which includes date standardization 

and data normalization to ensure consistency and improve 

model performance. 
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After preprocessing, the data is divided into training 

and test sets. The training set is used to train deep learning 

learning models, while the test set is used for evaluation to 

assess the developed model accuracy. Once trained, the 

model undergoes evaluation, ensuring that it meets 

performance standards. The final trained model is then 

integrated into a Flask API, enabling interaction with 

external applications. The API facilitates the deployment of 

daily and monthly evapotranspiration forecast models, 

which can be accessed via various user interfaces (UIs) on 

mobile and desktop devices through POST requests. 

 

 
Fig 2 System Architecture 

 

A. Evapotranspiration Data Collection 

The evapotranspiration dataset consists of time series 

data collected on both daily and monthly scales, providing 

insights into water loss due to evaporation and plant 

transpiration over time. The daily dataset captures 

evapotranspiration values recorded from 3rd January 2023 

to 22nd December 2023. This dataset includes Date and 

Evapotranspiration values, allowing for detailed analysis of 

short-term variations in evapotranspiration rates. A sample 

of the dataset is illustrated in Figure 3. In addition to daily 

records, monthly evapotranspiration values have been 

collected from 1st January 2003 to 1st December 2024. This 

long-term dataset enables the study of seasonal and annual 

trends in evapotranspiration, aiding in climate pattern 

analysis and agricultural planning. A sample of this dataset 

is presented in Figure 4. 

 

 
Fig 3 Graphical Plot of Daily Evapotranspiration Data 

https://doi.org/10.38124/ijisrt/25may976
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                             International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25may976 

 

IJISRT25MAY976                                                             www.ijisrt.com                                                                                    2711 

 
Fig 4 Graphical plot of Monthly Evapotranspiration Data 

 

B. Data Preprocessing 

To ensure data consistency and improve analysis 

accuracy, several preprocessing steps were performed on the 

evapotranspiration dataset before model training and 

evaluation. These steps include date standardization and data 

normalization to enhance the usability of the dataset for 

time-series analysis. 

 

 Date Standardization:  

Date standardization ensures uniformity in date 

formats across the dataset, which is essential for time-series 

analysis. In this study, the original date format was 

DD/MM/YYYY. However, to ensure consistency and 

compliance with international best practices, the ISO 8601 

standard (YYYY-MM-DD) was adopted. This 

transformation simplifies data handling and ensures 

seamless integration with machine learning models. 

 

 Data Normalization:  

Normalization is a rescaling technique that adjusts 

numerical values to a standard range, typically [0, 1], to 

ensure that all features contribute equally to model learning. 

This process is particularly important when data features 

have varying scales, as it prevents any single feature from 

dominating the analysis. The Min-Max normalization 

method was applied using the formula: 

 

𝑋! =  
   𝑋 − 𝑋𝑚i𝑛 

 
𝑋𝑚𝑎𝑥 – 𝑋𝑚i𝑛                                                                        (1) 

 

Where 𝑋! represents the normalized value, 𝑋 is the 

value to be normalized, 𝑋𝑚i𝑛 is the minimum value in the 

dataset, and 𝑋𝑚𝑎𝑥 is the maximum value in the dataset. 

 

Table 1 presents the first 18 samples of the daily 

dataset, showcasing the standardized date, original 

evapotranspiration values, and their normalized equivalents. 

Similarly, Table 2 provides a preview of the first 18 samples 

of the monthly dataset, highlighting the same 

transformations. 

 

Table 1 Daily Data 

Date Evapo_Data Scaled_Evapo_Data 

2023-01-03 4.0 0.142857 
2023-01-04 3.5 0.071429 
2023-01-05 3.3 0.042857 

2023-01-06 3.9 0.128571 

2023-01-07 3.8 0.114286 
2023-01-08 3.2 0.028571 
2023-01-09 3.0 0.000000 

2023-01-10 3.1 0.014286 

2023-01-11 3.2 0.028571 
2023-01-12 3.5 0.071429 
2023-01-13 3.6 0.085714 

2023-01-14 3.7 0.100000 

2023-01-15 3.8 0.114286 
2023-01-16 3.9 0.128571 
2023-01-17 3.3 0.042857 
2023-01-18 3.2 0.028571 

2023-01-19 3.1 0.014286 

2023-01-20 3.2 0.028571 
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Table 2 Monthly Data 

Date Evapo_Data Scaled_Evapo_Data 

2003-01-01 123.9 0.000000 
2003-02-01 132.1 0.075023 
2003-03-01 146.5 0.206770 

2003-04-01 162.1 0.349497 

2003-05-01 181.2 0.524245 
2003-06-01 199.2 0.688930 
2003-07-01 211.5 0.801464 

2003-08-01 207.8 0.767612 

2003-09-01 195.2 0.652333 
2003-10-01 176.9 0.484904 
2003-11-01 157.1 0.303751 

2003-12-01 142.9 0.173833 

2004-01-01 125.2 0.011894 
2004-02-01 133.5 0.087832 
2004-03-01 148.1 0.221409 
2004-04-01 164.2 0.368710 

2004-05-01 183.1 0.541629 

2004-06-01 200.5 0.700823 

 

C. Data Splitting 

In this study, the evapotranspiration dataset was 

partitioned into training and test sets to facilitate model 

evaluation. To preserve the temporal dependencies inherent 

in time-series data, an overlapping approach was 

implemented. Specifically, the last 30 data points from the 

training set were included in the test set to ensure smooth 

transitions and enhance forecasting accuracy. 

 

For the daily dataset, which comprises 354 instances, a 

70% training set split was applied. This resulted in 248 

instances being allocated to the training set, while the 

remaining 136 instances were designated for testing. The test 

set was computed using the following formula: 

 

Test Set = Total Data – (Training Data – 30) 354-(248-

30) = 136 Similarly, the monthly dataset consists of 264 

instances, with 70% (185 instances) allocated for training and 

109 instances for testing. The test set for the monthly dataset 

was determined using the same overlapping method: Test 

Set = Total Data – (Training Data – 30) 264-(185-30) = 109 

 

D. Learning Model 

 

 Long Short-Term Memory (LSTM) Network 

LSTM networks are a specialized type of recurrent 

neural network (RNN) designed to effectively handle 

sequential data by addressing the vanishing gradient problem 

common in standard RNNs. They are particularly well-suited 

for time-series tasks, such as evapotranspiration forecasting, 

where current values often depend on previous ones. LSTM's 

unique cell structure, featuring input, forget, and output gates, 

allows the network to selectively retain or discard 

information over time, making it highly effective for 

capturing long-term dependencies and managing varying 

temporal relevance. Additionally, LSTMs can predict 

multiple future time steps, making them ideal for 

forecasting applications. 

 

 
Fig 5 LSTM Structure 
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The LSTM model reads an evapotranspiration input 

value 𝑣i which passes through a memory block with cell 

containing three gates: (𝐼, 𝑓, and 𝑜) input (I), forget (𝑓), and 

output (𝑜) gate respectively. 

 

The forget gate 𝑓 in equation (2) determines which 

evapotranspiration information from the previous cell state 

𝑠𝑡𝑎𝑡𝑒() should be discarded. It uses the sigmoid function σ to 

output a value between 0 (forget) and 1 (retain). 

 

𝑓𝑡 = σ (𝑊*.𝑥𝑡 + 𝑈*. 𝑜𝑢𝑡() + 𝑏*)                                       (2) 

 

Where 𝑊 and 𝑈 represents the weight of the input and 

recurrent connections, 𝑏 represents bias.  

 

Input gate 𝐼 in equation (3) allows the model to 

incorporate new relevant evapotranspiration factors from the 

current time step. It is at this stage the output of equation (4) 

which is 𝑎𝑡 is created to update the cell state 𝑠𝑡𝑎𝑡𝑒𝑡. 

 

𝑖𝑡 = σ (𝑊i.𝑥𝑡 + 𝑈i. 𝑜𝑢𝑡() + 𝑏i)                                         (3) 

 
𝑎𝑡 = tanh (𝑊 .𝑣𝑡 + 𝑈𝑎. 𝑜𝑢𝑡() + 𝑏𝑎)                                  (4) 

 

The cell state 𝑠𝑡𝑎𝑡𝑒𝑡 is updated by combining 𝑠𝑡𝑎𝑡𝑒() 

and the candidate value𝑎𝑡, modulated by the forget 𝑓𝑡 and 

input 𝑖𝑡 gates as described in equation (5). The updated cell 

state retains long-term dependencies critical for 

understanding trends in evapotranspiration. 

 

𝑠𝑡𝑎𝑡𝑒𝑡 = (𝑎𝑡 ʘ 𝑖𝑡 + 𝑓𝑡 ʘ 𝑠𝑡𝑎𝑡𝑒())                                    (5) 

 

Where ʘ represents the element-wise product called 

Hadamard product, 𝑠𝑡𝑎𝑡𝑒𝑡 represents the new state, and 

𝑠𝑡𝑎𝑡𝑒𝑡() represents the previous state. 

 

The output gate determines the hidden state 𝑜𝑢𝑡𝑡 to be 

passed to the next cell and used for predictions. It involves 

two steps, which are equation (6) and (7). 

 

The output of equation (7) is the hidden state 𝑜𝑢𝑡𝑡. It 

represents the processed information at the current time step. 

It therefore passed to a fully connected layer to generate the 

predicted evapotranspiration value(s) for future time steps. 

 

𝑜𝑡 = σ (𝑊𝑜.𝑥𝑡 + 𝑈𝑜. 𝑜𝑢𝑡() + 𝑏𝑜)                                       (6) 

 
𝑜𝑢𝑡𝑡 = tanh (𝑠𝑡𝑎𝑡𝑒𝑡) ʘ 𝑜𝑡                                                                                        (7) 

 

where 𝑜𝑢𝑡𝑡 represents the hidden vector of the LSTM 

unit. 

 

The LSTM architecture for this study consists of 2 

LSTM layers, a dense layer, and output layer. LSTM layer 1 

accepts an input shape: (𝑛_𝑖𝑛𝑝𝑢𝑡, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = (30, 1) 

and 50 LSTM units. 𝑛_𝑖𝑛𝑝𝑢𝑡 Represents the number of time 

steps in the input sequence. This indicates how many 

historical times steps the model considers when making a 

prediction. For instance, for the model to forecast a day 

evapotranspiration value; the model will use data from the 

past 30 days. 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 represents the number of features 

(variables) available for each time step. In the context of this 

research, the data used is univariate and the feature is the 

evapotranspiration value. LSTM layer 2 accept input from 

the first LSTM layer with shape: (n_input, units) = (30, 50). 

These wills output a single time step vector of shape 50. 

Dense Layer takes the 50 outputs from the second LSTM 

layer and produces 25 outputs Output Layer takes 25 inputs 

from the dense layer and outputs a single value for 

regression. Figure 6 shows the summary of LSTM 

architecture.

 
Fig 6 Summary of LSTM Architecture 
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E. Comparative Models 

Convolutional Neural Network (CNN) are a class of 

deep learning models designed primarily for processing 

structured grid-like data, such as images and time series. 

They use convolutional layers to automatically extract spatial 

and temporal features, reducing the need for manual feature 

engineering. CNNs have revolutionized fields like computer 

vision, but their adaptability extends beyond image analysis. 

In the context of evapotranspiration forecasting, CNNs can 

be employed to analyze temporal patterns in meteorological 

data. By capturing intricate dependencies within historical 

climate variables such as temperature, humidity, wind speed, 

and solar radiation, CNNs can learn complex relationships 

that influence evapotranspiration rates. Unlike traditional 

models that rely on predefined equations, CNNs leverage 

data-driven learning, making them effective in handling 

nonlinear variations in weather patterns. 

 

Artificial Neural Network (ANN) Conventional ANN 

consists of multiple layers of neurons, including an input 

layer, hidden layers, and an output layer. In 

evapotranspiration forecasting, ANN maps meteorological 

input features to predict evapotranspiration (ET) values. 

Each neuron in the hidden layer performs a weighted sum of 

the inputs, adds a bias, and applies an activation function. 

 

Gated Recurrent Unit (GRU) is a variant of RNN 

designed to address the vanishing gradient problem in 

standard RNNs. Its ability to model temporal dependencies 

makes it suitable for predicting ET. Given an input feature 

vector which include temporal features derived from date, the 

GRU updates its hidden state ℎ𝑡 at each time step using the 

following equations: 

 

𝑧𝑡 =  (𝑊𝑧[ℎ𝑡(), 𝑥𝑡] + 𝑏𝑧)                                                   (8) 

 
𝑟𝑡 =  (𝑊𝑟[ℎ𝑡(), 𝑥𝑡] + 𝑏𝑟)                                                   (9) 

ℎ 

H
  =  𝑡𝑎𝑛ℎ(𝑊.[𝑟𝑡⨀ ℎ𝑡(), 𝑥𝑡 ] + 𝑏.)                                  (10) 

 

Where 𝑊𝑧, 𝑊𝑟 , and 𝑊.  are weight matrix for update 

𝑧𝑡, reset 𝑟𝑡, and candidate hidden state ℎH𝑡 respectively, 𝑏𝑧, 

𝑏𝑟 , 𝑏.  are the bias terms, 𝜎  is the sigmoid activation, ℎ𝑡() 

is the past hidden state, and ⨀ is element-wise 

multiplication. 

 

 Bi-Directional GRU: 

The Bi-GRU is a type of recurrent neural network 

(RNN) architecture that extends the standard GRU by 

incorporating bidirectional processing. Unlike traditional 

GRUs, which process data in a single direction (past to 

future), Bi-GRUs utilize two GRU layers one reading the 

sequence forward and the other in reverse. This dual 

processing enables the model to capture both past and future 

dependencies, making it more effective for sequence learning 

tasks such as time series forecasting, speech recognition, 

and natural language processing. In evapotranspiration 

prediction, Bi-GRU improves forecasting accuracy by 

leveraging both past weather trends and potential future 

influences within historical data. This ability allows for 

better handling of complex, nonlinear relationships in 

climate patterns, enhancing water resource management and 

agricultural planning. 

 

 Bi-Directional LSTM) Network:  

The Bi-LSTM network is a variant of the LSTM 

model that processes input sequences in both forward and 

backward directions. LSTMs are known for their ability to 

retain long-term dependencies, addressing the vanishing 

gradient problem in traditional RNNs. By incorporating 

bidirectionality, Bi-LSTMs gain a more comprehensive 

understanding of sequence dynamics, making them 

particularly useful for forecasting problems where both past 

and future context are essential. 

 

F. Performance Metrics 

Mean Squared Error (MSE) measures the average of 

the squared differences between predicted and actual values. 

It is a widely used metric for regression tasks because it 

emphasizes larger errors due to the squaring operation, 

making it sensitive to outliers. 

 

  𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (11) 

 

 

where 𝑛 is the number of evapotranspiration samples, 

𝑦iis actual value, and 𝑦Oi is the predicted value 

 

Root Mean Squared Error (RMSE) is the square root 

of the MSE. It provides an interpretable measure of error in 

the same units as the target variable, making it more 

intuitive than MSE. 

 

  𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 −  �̂�𝑖)

2                                         (12) 

 

Mean Absolute Error (MAE) measures the average 

magnitude of errors between predicted and actual values, 

ignoring their direction. It provides a straightforward 

interpretation of the average error. 

 

  𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1                                       (13) 

 

 Experimental Setup 

The system was developed using the Python 

programming language, leveraging various Python libraries 

essential for deep learning implementation. These libraries 

include Keras for model development, NumPy and Pandas 

for data manipulation, Matplotlib for visualization, and 

Scikit-learn for data preprocessing and evaluation. For the 

development environment, Google Colaboratory was chosen 

as the primary platform due to its accessibility, cloud-based 

GPU support, and integration with Google Drive for 

seamless data storage and retrieval. 
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IV. RESULTS AND DISCUSSION 

 

A. Daily Evapotranspiration 

A detailed evaluation of the LSTM model’s performance is presented, comparing the predicted values with actual ET 

measurements as well as presenting the performance of the model based on standard metrics. Table 3 provides a comprehensive 

comparison between observed and predicted values, offering insights into the model’s predictive accuracy. 

 

Table 3 Actual value and predicted LSTM values 

Date Actual Value LSTM Pred 

2023-12-03 5.6 5.953311 

2023-12-04 5.5 5.872607 

2023-12-05 5.5 5.780755 

2023-12-06 5.9 5.748665 

2023-12-07 5.0 5.981606 

2023-12-08 5.8 5.469844 

2023-12-09 5.6 5.834097 

2023-12-10 5.6 5.778281 

2023-12-11 5.6 5.756358 

2023-12-12 5.9 5.746358 

2023-12-13 5.8 5.926386 

2023-12-14 5.8 5.896386 

2023-12-15 5.6 5.888851 

2023-12-16 5.6 5.762726 

2023-12-17 5.6 5.733296 

2023-12-18 5.7 5.723642 

2023-12-19 5.0 5.779881 

2023-12-20 5.4 5.364153 

2023-12-21 5.2 5.504023 

2023-12-22 5.6 5.408725 

 

 
Fig 7 The Graphical Representation of the Daily Actual, Validation, and LSTM predicted values 

 

Based on Table 3, the predicted values from the LSTM 

model are consistently close to the actual evapotranspiration 

values, indicating that the model has successfully learned 

the underlying patterns in the dataset. The deviations 

between the actual and predicted values are generally small, 

typically within a range of approximately ±0.6 units. This 

suggests the model has a good fit to the data. On dates like 

2023-12-03, 2023-12-04, and 2023-12-11, the predicted 

values (e.g., 5.953311, 5.872607, and 5.756358) are very 

close to the actual values (5.6, 5.5, and 5.6, respectively). 

Such results demonstrate the model's ability to effectively 

generalize and predict future data points. However, there are 

some notable deviations. On 2023-12-08, the actual 

evapotranspiration value is 5.8, while the predicted value is 

significantly lower at 5.469844. This represents a deviation 

of approximately -0.33 units. Similarly, on 2023-12-19, the 

actual value is 5.0, while the predicted value is 5.779881, 

showing a deviation of +0.78 units. 

 

Figure 8 shows the plot for training, validation, and the 

LSTM prediction of daily data, while Table 4 presents the 

evaluation result for LSTM prediction on the daily 

evapotranspiration task. 
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Table 4 LSTM Evaluation on Daily test data 

Metrics value 

Accuracy 0.9568 

MSE 0.0034 

RMSE 0.0583 

MAE 0.0433 

 

 Accuracy (0.9568):  

The value of 0.9568 is very high, suggesting that the 

model is performed well in making predictions relative to the 

true values. 

 

 The MSE of 0.0034 is quite low, which is a good sign of 

accuracy and precision in the model’s predictions. 

 The RMSE value of 0.0583 suggests that, on average, the 

model's predictions deviate from the actual values by 

approximately 0.0583 units. A small RMSE indicates that 

the model's predictions are very close to the actual values. 

 An MAE of 0.0433 is also quite low, suggesting that the 

model’s predictions are typically off by only about 

0.0433 units on average, which is a good result. 

 

Overall Assessment shows that the model is performed 

excellently, with high accuracy and low error values across 

the board. Specifically, an accuracy of 95.68% and low 

values for MSE, RMSE, and MAE suggest that the model is 

highly accurate and precise in making predictions. Table 5 

presents the LSTM daily forecasted values, while Figure 9 

displays the graphical representation of the daily forecasted 

values. 

 

Table 5 LSTM Daily Forecasted Values 

Date LSTM Forecast value 

2023-12-23 5.625234 

2023-12-24 5.683219 

2023-12-25 5.730966 

2023-12-26 5.772871 

2023-12-27 5.810213 

2023-12-28 5.844479 

2023-12-29 5.876368 

2023-12-30 5.906655 

2023-12-31 5.936096 

2023-01-01 5.965177 

2023-01-02 5.994234 

2023-01-03 6.023552 

2023-01-04 6.053301 

2023-01-05 6.083535 

2023-01-06 6.114115 

2023-01-07 6.145453 

2023-01-08 6.177037 

2023-01-09 6.209017 

2023-01-10 6.241320 

2023-01-11 6.273898 

 

 
Fig 8 The Graphical Representation of the Daily Forecasted value 
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V. PERFORMANCE COMPARISON WITH OTHER COMPARATIVE MODELS 

 

A. Mid Term Evapotranspiration (Daily model) 

The Figure 9 shows the training loss trends of the comparative models (ANN, GRU, Bi-LSTM, Bi- GRU, CNN) including, 

LSTM over 50 epochs, highlighting their convergence patterns and stability. ANN Starts with high loss, drops rapidly within 5 

epochs, stabilizes after ~15 epochs with minor fluctuations, achieving low final loss. GRU Sharp initial decline but more 

fluctuations than ANN; stabilizes around 15 epochs, ending with steady low loss. Bi-LSTM Slightly higher initial loss than others 

but stabilizes smoothly after a rapid early drop, achieving the lowest final loss with consistency (top performer). Bi-GRU Similar 

early loss reduction to Bi-LSTM but with more fluctuations before stabilizing (10–15 epochs); final loss comparable to GRU. 

CNN Exhibits persistent fluctuations throughout training, gradual decline, and less stability than recurrent models, yet achieves a 

low (albeit less smooth) final loss. LSTM Starts with the highest initial loss, declines sharply early, stabilizes with occasional 

fluctuations, and ends with low, stable loss. 

 

 
Fig 9 Models Loss for Daily Training Data 

 

Table 6 Comparative Predictions of Daily Evapotranspiration 

Date Actual Value LSTM Pred CNN Pred GRU Pred ANN Pred Bi-LSTM Pred Bi-GRU Pred 

2023-12-03 5.6 5.953311 5.934629 6.007970 6.269683 6.159265 6.149006 

2023-12-04 5.5 5.872607 5.906876 5.909600 6.245405 6.089574 6.097361 

2023-12-05 5.5 5.780755 6.261494 5.808281 6.257376 6.005129 6.007585 

2023-12-06 5.9 5.748665 6.208382 5.783804 6.274242 5.946955 5.890897 

2023-12-07 5.0 5.981606 6.176565 6.048241 6.219503 6.141411 6.043536 

2023-12-08 5.8 5.469844 5.761432 5.490928 5.999240 5.666285 5.579797 

2023-12-09 5.6 5.834097 5.837838 5.905838 6.200474 6.054063 6.049279 

2023-12-10 5.6 5.778281 6.042766 5.883103 6.299156 6.034836 6.145674 

2023-12-11 5.6 5.756358 5.891913 5.756944 6.207011 6.030442 6.005251 

2023-12-12 5.9 5.746358 5.908746 5.834259 6.103436 5.992534 5.964360 

2023-12-13 5.8 5.926386 6.131533 6.007602 6.224924 6.155228 6.122394 

2023-12-14 5.8 5.896386 6.074751 5.980446 6.231280 6.137808 6.143321 

2023-12-15 5.6 5.888851 6.251398 5.954283 6.230247 6.154355 6.217968 

2023-12-16 5.6 5.762726 6.185749 5.851364 6.315797 6.049516 6.106822 

2023-12-17 5.6 5.733296 5.899385 5.821526 6.215755 5.982413 5.953863 

2023-12-18 5.7 5.723642 5.926521 5.836035 6.183595 5.969590 5.929897 

2023-12-19 5.0 5.779881 5.960268 5.885684 6.260021 6.051025 6.005068 

2023-12-20 5.4 5.364153 5.659458 5.441394 5.978889 5.694838 5.664302 

2023-12-21 5.2 5.504023 5.583258 5.610387 6.119390 5.857392 5.874679 

2023-12-22 5.6 5.408725 5.741256 5.538786 6.026420 5.784208 5.852827 
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According to Table 6, LSTM exhibited the best 

predictive accuracy, consistently maintaining values close to 

the actual ET measurements. For instance, on December 3, 

2023, the actual ET was 5.6, and the LSTM prediction was 

5.95, demonstrating a minor overestimation. Across multiple 

dates, LSTM predictions remained stable with relatively low 

variance, highlighting its ability to capture sequential 

dependencies effectively. However, it exhibited slight 

underestimations on certain dates (December 12, where the 

actual ET was 5.9, and LSTM predicted 5.74). 

 

CNN demonstrated higher variance in predictions, 

occasionally deviating more than recurrent models. For 

instance, on December 5, the CNN prediction (6.26) 

overestimated the actual ET (5.5) significantly. This 

tendency suggests that CNN may struggle with capturing 

temporal dependencies as effectively as LSTM. 

 

GRU also performed well in capturing ET trends. On 

December 3, the GRU-predicted value (6.00) closely 

matched the actual value (5.6), indicating strong forecasting 

ability. However, slight overestimations were observed, 

particularly on December 7, where the predicted ET (6.04) 

exceeded the actual value (5.0). Overall, GRU maintained a 

balance between accuracy and computational efficiency, 

making it a strong alternative to LSTM. 

 

The ANN model exhibited the largest deviations from 

actual values across multiple instances. On December 3, 

ANN predicted 6.27, an overestimation of nearly 0.7 units. 

Similar overestimations were seen on December 7 (6.21 

against 5.0) and December 10 (6.30 against 5.6). These 

results suggest that ANN struggled to capture temporal 

dependencies effectively, making it less reliable for ET 

forecasting compared to recurrent architectures. 

 

 Bi-LSTM and Bi-GRU Model Performance 

Bidirectional variants of LSTM and GRU, Bi-LSTM 

and Bi-GRU, provided competitive results, leveraging 

information from both past and future time steps. These 

models generally followed the trends observed in LSTM and 

GRU but introduced slight smoothing effects. On December 

5, Bi-LSTM predicted 6.00, closer to the actual ET (5.5) than 

CNN (6.26). Figure 10 shows the graphical representation of 

the comparative predictions of the Models for daily 

evapotranspiration 

 

 
Fig 10 The Graphical Representation of the Actual, Validation of the Models Daily predicted values 
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Table 7 Performance Comparison on Daily Evapotranspiration Data 

Metrics LSTM CNN ANN GRU Bi-LSTM Bi-GRU 

Accuracy 0.9568 0.9330 0.9180 0.9508 0.9323 0.93722 

MSE 0.0034 0.0068 0.0089 0.0036 0.0064 0.00566 

RMSE 0.0583 0.0825 0.0094 0.0605 0.0798 0.07528 

MAE 0.0433 0.0673 0.0823 0.0451 0.0679 0.06306 

 

Table 7 presents the comparison of LSTM, CNN, 

GRU, Bi-LSTM, Bi-GRU, and ANN models for daily ET 

prediction. Among the models evaluated, LSTM 

demonstrates the highest accuracy (0.9568), making it the 

most effective for capturing temporal dependencies in ET 

data. GRU follows closely with an accuracy of 0.9508, 

indicating that it also performs well in modeling sequential 

patterns. On the other hand, ANN has the lowest accuracy 

(0.9180), suggesting that it struggles to learn the complex 

relationships governing evapotranspiration. Meanwhile, 

CNN (0.9330), Bi-LSTM (0.9323), and Bi- GRU (0.9372) 

exhibit moderate performance, but they do not match the 

precision of LSTM and GRU. When considering the MSE, 

LSTM achieves the lowest value (0.0034), followed closely 

by GRU (0.0036), indicating minimal deviation from actual 

ET values. In contrast, ANN records the highest MSE 

(0.0089), reinforcing its weaker predictive performance. The 

MSE values for CNN (0.0068), Bi- LSTM (0.0064), and Bi-

GRU (0.00566) are notably higher than those of LSTM and 

GRU, confirming that these models introduce more errors in 

their predictions. 

 

A similar trend is observed in RMSE, where LSTM 

records the lowest RMSE (0.0583), making it the most 

precise model, with GRU slightly behind at 0.0605. On the 

other hand, CNN (0.0825), Bi-LSTM (0.0798), and Bi-GRU 

(0.07528) exhibit considerably higher RMSE values, 

indicating greater variability in their predictions. These 

results suggest that LSTM and GRU provide more stable 

and accurate ET estimates, while CNN and Bi-LSTM 

introduce greater inconsistencies. 

 

MAE values further highlight LSTM’s superiority, as 

it achieves the lowest MAE (0.0433), followed closely by 

GRU (0.0451). This indicates that these two models have 

the smallest absolute prediction errors on average. In 

contrast, ANN again performs the worst, with the highest 

MAE (0.0823), further confirming its struggles in accurately 

predicting ET values. Similarly, CNN (0.0673), Bi-LSTM 

(0.0679), and Bi-GRU (0.06306) exhibit higher MAE 

values, reinforcing the observation that these models are less 

reliable than LSTM and GRU. 

 

Overall, LSTM emerges as the best-performing model 

for daily evapotranspiration prediction, achieving the highest 

accuracy and the lowest error metrics across all evaluations. 

GRU proves to be a strong alternative, offering nearly 

comparable performance with slightly higher error values. 

Meanwhile, ANN exhibits the weakest performance, 

struggling with the lowest accuracy and the highest errors. 

The results also indicate that CNN, Bi-LSTM, and Bi-GRU 

provide moderate performance but introduce more errors 

than LSTM and GRU. 

 

B. Monthly Evapotranspiration 

The Table 8 presents a comparison between actual 

evapotranspiration values and LSTM-predicted values over 

a period spanning from May 2003 to December 2004. The 

evaluation of the predicted values in relation to the actual 

values helps in assessing the performance LSTM model for 

evapotranspiration forecasting. 

 

 

Table 8 Monthly Actual value and predicted LSTM values 

Date Actual Data LSTMPrediction 

2003-05-01 201.9 200.868698 

2003-06-01 216.5 216.501877 

2003-07-01 228.9 228.193863 

2003-08-01 223.9 223.944763 

2003-09-01 207.9 207.941879 

2003-10-01 185.9 185.966797 

2003-11-01 172.1 167.576508 

2003-12-01 160.3 153.764572 

2004-01-01 142.2 144.295288 

2004-02-01 150.5 150.239685 

2004-03-01 166.8 166.705338 

2004-04-01 184.2 184.614059 

2004-05-01 204.8 202.009293 

2004-06-01 220.1 218.166992 

2004-07-01 233.2 228.869125 

2004-08-01 227.8 224.771118 

2004-09-01 212.3 210.885864 

2004-10-01 191.2 189.121323 
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2004-11-01 168.5 167.002701 

2004-12-01 153.9 155.540787 

 

Based on Table 8, LSTM’s predictions closely align 

with actual evapotranspiration (ET) measurements. In June 

2003, the model’s prediction (216.50 mm) matches the 

observed ET value (216.5 mm), reflecting its ability to 

capture the sustained ET levels during the peak rainy season. 

While solar radiation is reduced due to persistent cloud cover, 

high soil moisture and relative humidity sustain 

evapotranspiration, particularly during short breaks in 

rainfall. Similarly, in March 2004, the prediction (166.71 mm) 

is almost identical to the actual value (166.8 mm), indicating 

the model effectively tracks the seasonal rebound in ET as 

the dry season transitions into the rainy season, when rising 

humidity and increasing soil moisture promote higher ET 

rates. These results highlight the LSTM’s capability to 

model seasonal hydrological cycles, which are critical for 

water resource management, irrigation planning, and 

ecosystem studies. 

 

However, discrepancies emerge during periods of 

abrupt environmental change. In November 2003, the model 

underestimates ET by 4.5 mm (predicted 167.58 mm against 

actual 172.1 mm). This could reflect residual soil moisture 

from late-season rains, which sustains ET longer than 

expected, or a delay in seasonal cooling that the LSTM does 

not fully capture. Similarly, in December 2003, the gap 

widens to 6.5 mm (153.76 mm against 160.3 mm), 

potentially due to localized climatic variations such as 

unseasonably warm conditions or delayed vegetation 

dormancy, both of which sustain higher ET rates. These errors 

underscore the challenge of modeling ET during transitional 

months, where complex interactions between meteorology, 

soil moisture, and land cover disrupt typical seasonal 

patterns. 

 

 

 
Fig 11 The Graphical Representation of the Monthly Actual, Validation, LSTM predicted values 

 

Table 9 LSTM Evaluation on Monthly test data 

Metrics Value 

Accuracy 0.9894 

MSE 0.0005 

RMSE 0.0222 

MAE 0.0182 

 

The Table 9 presents the overall performance 

evaluation of the LSTM model using standard statistical 

metrics: 

 

  Accuracy (0.9894):  

Indicates a high level of agreement between 

predicted and actual values, demonstrating strong model 

performance. 

 

 

 

  Mean Squared Error (MSE: 0.0005):  

A very low value, signifying minimal error in the 

model’s predictions. 

 

 Root Mean Squared Error (RMSE: 0.0222):  

Reinforces the reliability of the model by showing that 

the average error remains low. 

 

  Mean Absolute Error (MAE: 0.0182):  

Suggests that the model's predictions deviate only 

slightly from actual values on average. 
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Table 10 LSTM Monthly Forecast Values 

Date LSTM Forecast value 

2025-01-01 141.929281 

2025-02-01 145.657203 

2025-03-01 158.423081 

2025-04-01 176.444225 

2025-05-01 196.111431 

2025-06-01 213.586176 

2025-07-01 224.086926 

2025-08-01 223.452575 

2025-09-01 211.240117 

2025-10-01 191.138596 

2025-11-01 168.555804 

2025-12-01 149.373704 

2026-01-01 139.542873 

2026-02-01 141.816560 

2026-03-01 154.003449 

2026-04-01 171.989765 

2026-05-01 192.015734 

2026-06-01 210.298443 

2026-07-01 222.097408 

2026-08-01 222.946363 

 

 
Fig 12 The Graphical Representation of the Monthly Forecasted value 

 

Table 11 Comparative Predictions of Monthly Evapotranspiration 

Date Actual Data LSTM 

Prediction 

GRU 

Prediction 

Bi-LSTM 

Prediction 

Bi-GRU 

Prediction 

CNN 

Prediction 

ANN 

Prediction 

2003-05-01 201.9 200.868698 203.602234 201.735077 206.582993 196.577759 198.859253 

2003-06-01 216.5 216.501877 221.342545 216.026337 221.538193 212.414581 215.302444 

2003-07-01 228.9 228.193863 226.688339 221.992828 226.096039 221.930176 221.897156 

2003-08-01 223.9 223.944763 224.959717 218.825928 223.081894 220.137772 219.255463 

2003-09-01 207.9 207.941879 207.490311 203.803162 204.421295 206.423813 205.155624 

2003-10-01 185.9 185.966797 186.793915 182.619202 181.814346 186.590195 183.952805 

2003-11-01 172.1 167.576508 165.549896 160.442627 157.933594 165.445312 161.615585 

2003-12-01 160.3 153.764572 154.182617 146.273468 144.623703 153.557266 147.890121 

2004-01-01 142.2 144.295288 150.682877 141.004562 139.488892 146.606522 144.904617 

2004-02-01 150.5 150.239685 151.275253 144.886459 143.107376 148.459198 146.519928 

2004-03-01 166.8 166.705338 166.724289 160.507874 162.467545 162.743515 158.765366 

2004-04-01 184.2 184.614059 185.849197 181.091156 185.069138 178.714722 178.214264 

2004-05-01 204.8 202.009293 204.631775 200.618591 205.202957 198.094421 198.531387 

2004-06-01 220.1 218.166992 222.814423 216.116165 221.467606 213.568604 215.791794 

2004-07-01 233.2 228.869125 229.126358 223.995392 227.881546 223.387558 223.770767 
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2004-08-01 227.8 224.771118 228.444733 221.184891 225.327164 222.570740 222.562134 

2004-09-01 212.3 210.885864 210.455276 205.824554 206.097260 208.737457 208.956100 

2004-10-01 191.2 189.121323 190.557861 184.733856 184.055191 189.408859 187.97724 

2004-11-01 168.5 167.002701 170.163101 162.961929 160.695465 168.475082 165.972778 

2004-12-01 153.9 155.540787 151.220520 146.512299 143.332657 153.871231 148.517456 

 

According to Table 11, the actual ET data follows a 

distinct seasonal cycle, peaking in mid-year months (i.e., July 

2003: 228.9 mm; July 2004: 233.2 mm) and dipping in 

harmattan (January 2004: 142.2 mm), reflecting typical 

evapotranspiration dynamics driven by temperature, sunlight, 

and vegetation activity. Most models track this seasonal trend 

but differ in their precision: 

 

LSTM and GRU predictions align closely with actual 

values during stable periods ( June 2003: LSTM predicts 

216.50 against actual 216.5; GRU predicts 221.34). 

 

Bi-GRU and Bi-LSTM (bidirectional models) 

occasionally lag behind peaks, such as in July 2003, where 

Bi-LSTM predicts 221.99 mm against the actual 228.9 mm, 

suggesting challenges in capturing rapid wet season 

increases. 

 

CNN and ANN show mixed results, with CNN 

consistently underestimating peaks (i.e., July 2004: CNN 

predicts 223.39 against actual 233.2) and ANN struggling 

with harmattan (i.e., January 2004: ANN predicts 144.90 

against the actual 142.2). 

 

Conclusively, all the models capture the broad 

seasonal ET cycle, their performance varies significantly 

during critical periods. GRU and LSTM strike the best 

balance between accuracy and robustness, but bidirectional 

architectures and CNNs lag in peak seasons. 

 

 
Fig 13 The Graphical Representation of the Actual, Validation of the Models Monthly predicted values 
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Table 12 Performance comparison on Monthly Data 

Metrics LSTM CNN ANN GRU Bi-LSTM Bi-GRU 

Accuracy 0.9894 0.9782 0.9779 0.9860 0.97492 0.9758 

MSE 0.0005 0.0016 0.0019 0.0008 0.00244 0.0025 

RMSE 0.0222 0.0431 0.0446 0.0287 0.04289 0.0504 

MAE 0.0182 0.0385 0.0377 0.0229 0.04289 0.0412 

 

Based on Table 12, the LSTM model emerged as the 

most accurate and reliable predictor of evapotranspiration, 

achieving a near-perfect accuracy score of 0.9894 and the 

lowest error rates across all metrics. With a MSE of 0.0005 

and a RMSE of 0.0222. Its minimal mean absolute error 

(MAE) of 0.0182 mm further buttressed its precision, 

making it an ideal choice for evapotranspiration. 

 

The GRU model trailed closely behind LSTM, with an 

accuracy of 0.9860 and marginally higher errors (MSE: 

0.0008, RMSE: 0.0287). While its simplified architecture 

likely reduced computational overhead, the slight trade-off 

in precision suggests GRU may occasionally overlook 

nuanced patterns that LSTM’s more complex memory cells 

can retain. Still, its strong performance positions it as a 

practical alternative for scenarios where computational 

efficiency is prioritized without sacrificing significant 

accuracy. 

 

In contrast, CNN and ANN models delivered mid-tier 

results, with accuracies hovering around 0.978 and RMSE 

values nearing 0.04. These models struggled to match the 

temporal sophistication of LSTM and GRU. The CNN, 

designed primarily for spatial data, appeared ill-suited to the 

sequential nature of ET time series, while the ANN’s lack of 

built-in mechanisms to handle time-dependent relationships 

limited its ability to resolve seasonal trends. Their higher 

errors particularly in capturing peak ET values during dry 

season months highlighted their limitations in forecasting, 

where temporal context is critical. Surprisingly, bidirectional 

architectures like Bi-LSTM and Bi-GRU underperformed 

despite their theoretical promise. With accuracies below 0.976 

and RMSE values exceeding 0.04, these models lagged 

significantly behind their unidirectional counterparts. This 

unexpected result may stem from their bidirectional design, 

which processes data both forward and backward in time a 

feature better suited to tasks like language modeling, where 

future context is meaningful. 

 

VI. WEB APP DEVELOPMENT 

 

To ensure seamless deployment and scalability, the 

application utilizes Dockerization for model deployment. 

Docker provides a containerized environment that packages 

the model, application code, and dependencies into a single 

portable unit. This approach ensures that the application 

runs consistently across different systems and simplifies the 

process of sharing and updating the software. The 

Dockerized application is deployed on a local drive, 

providing easy access and cost-effective operation for local 

users without reliance on cloud services. 

 

A suitability range was provided for various crops to 

guide planting decisions by agronomists. The suitability 

insight is dynamically highlighted based on user-selected 

crops, enabling farmers to easily determine if the forecasted 

evapotranspiration is suitable for optimal growth and 

productivity. Forecast data is displayed in easy-to-read 

tabular formats, ensuring that farmers and stakeholders in 

Ogwashi- Uku can quickly interpret and apply the 

information. These ranges, derived from agronomic best 

practices, are presented as follows: 

 

 Food Crops: 

 

 Maize (Corn): 4.5-6.5 mm/day 

 Cassava: 4.0-6.0 mm/day 

 Yam: 3.5-5.5 mm/day 

 Rice: 5.0-7.0 mm/day 

 Vegetables (e.g., Tomatoes, Peppers): 4.0-6.0 mm/day 

 Okra: 3.5-5.5 mm/day 

 Cowpea: 3.5-5.5 mm/day 

 Plantain: 4.5-6.5 mm/day 

 

 Cash Crops: 

 

 Cocoa: 4.0-6.0 mm/day 

 Coffee: 4.5-6.5 mm/day 

 Rubber: 5.0-7.0 mm/day 

 Oil Palm: 5.5-7.5 mm/day 

 Sugarcane: 6.0-8.0 mm/day 

 Tobacco: 5.0-7.0 mm/day 

 Cotton: 5.5-7.5 mm/day 

 

Figure 14 (a) - Figure (14f) shows the display of the 

interface. 
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Fig 14 (A) Interface 

 

 
Fig 14 (B) Crop Type Dropdown 

 

 
Fig 14 (C) Dropdown for food crops 
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Fig 14 (D) Dropdown for cash crops 

 

 
Fig 14 (E) Forecast for food crops 

 

 
Fig 14 (F) Forecast for cash crops 
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VII. CONCLUSION 

 

This study emphasize the critical role of accurate 

evapotranspiration (ET) forecasting in optimizing water 

resource management and irrigation planning for sustainable 

agriculture in Ogwashi-Uku, Southern Nigeria. By 

leveraging Long Short-Term Memory (LSTM) networks, a 

deep learning-based approach was developed to address 

objective stated in the studied. 

 

The model was trained and evaluated using historical 

evapotranspiration data from Ogwashi-Uku, Southern 

Nigeria, covering both daily (2023) and monthly (2003–

2024) ET forecasts. The results demonstrate that LSTM-

based forecasting significantly improves ET prediction 

accuracy, achieving a Mean Squared Error (MSE) of 0.0034, 

Root Mean Squared Error (RMSE) of 0.0583, and Mean 

Absolute Error (MAE) of 0.0433 for daily ET forecasts, and 

MSE of 0.0005, RMSE of 0.0222, and MAE of 0.0182 for 

monthly forecasts. These metrics highlight the model’s 

ability to provide reliable mid-and-long-term ET projections, 

essential for efficient irrigation scheduling, drought 

mitigation, and climate resilience strategies. Conclusively, 

this study contributes to the advancement of data-driven 

agricultural decision-making, offering a scalable and 

efficient tool for policymakers, farmers, and water 

resource managers to optimize irrigation strategies and 

ensure sustainable food production in Nigeria. 
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