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Abstract: Text classification is crucial in natural language processing applications such as sentiment analysis, topic tagging, 

and news categorization. This paper presents a comparative analysis of three deep learning architectures—LSTM, 

Bidirectional LSTM, and Character-level Convolutional Neural Networks (Char-CNN), for the task of news categorization 

using the AG News dataset. The models were trained using a unified preprocessing pipeline, including tokenization, padding, 

and label encoding. Performance was evaluated based on classification accuracy, training time, and learning stability across 

epochs. 

 

The results show that Bidirectional LSTM outperforms the standard LSTM in capturing long-range dependencies by 

leveraging both past and future context. The Character-level CNN demonstrates robust performance by learning 

morphological patterns directly from raw text, making it resilient to misspellings and out-of-vocabulary words. The trade-

offs between model complexity, training time, and interpretability has also been analyzed. 

 

This study offers practical insights into model selection for real-world NLP applications and highlights the importance 

of architectural choices in deep learning-based text classification. 

 

Keywords: Deep Learning for NLP; Text Classification Models; Bidirectional LSTM Performance; Character-level CNN; AG News 

Dataset.  

 

How to Cite: Chitra Desai (2025) Deep Learning Architectures for Text Classification. International  

Journal of Innovative Science and Research Technology, 10(5), 2568-2573.  

https://doi.org/10.38124/ijisrt/25may1682 

 

I. INTRODUCTION  

 

Text classification has become a cornerstone task in 

Natural Language Processing (NLP), enabling the automated 

understanding, organization, and analysis of vast volumes of 

textual data. Traditionally, rule-based systems and 

conventional machine learning techniques were employed to 

tackle this problem. However, these approaches often struggled 

to capture the rich semantic and syntactic nuances inherent in 

natural language [1]. The emergence of deep learning has 

significantly advanced the field, providing architectures 

capable of learning hierarchical and contextual features directly 

from raw text without relying heavily on manual feature 

engineering. 

 

Among the deep learning architectures, Convolutional 

Neural Networks (CNNs) have demonstrated remarkable 

success in NLP applications such as sentence classification and 

semantic parsing. Their strength lies in their ability to extract 

local n-gram features and exploit hierarchical structures within 

text, making them highly effective for modeling short- to mid-

range dependencies [2]. However, a transformative leap in 

NLP performance was achieved through the introduction of 

word embeddings. 

 

Mikolov et al. initially proposed recurrent neural 

network-based language models that could learn distributed 

representations of words, preserving their semantic and 

syntactic properties [3]. This led to the development of the 

widely adopted Word2Vec model, which refined these 

embeddings to capture linguistic regularities and compositional 

patterns in a continuous vector space [4]. Building on this 

foundational work, recursive neural models were introduced to 

capture compositional semantics, thereby enhancing the 

model’s ability to understand complex sentence structures and 

sentiment [5]. 

 

These innovations in representation learning and 

architectural design collectively shifted text classification from 

a feature-engineering-centric task to one based on end-to-end 

learning, resulting in significant improvements in accuracy and 

scalability across real-world applications. 
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Expanding on these advancements, Hierarchical 

Attention Networks (HAN) were introduced to enhance 

document-level classification by integrating both word- and 

sentence-level attention mechanisms [6]. More recently, the 

advent of transformer-based models has revolutionized how 

text is represented and processed. The Transformer 

architecture, proposed by Vaswani et al. [7], laid the 

groundwork for self-attention mechanisms that capture long-

range dependencies more effectively. This innovation gave rise 

to powerful contextualized models such as BERT [8], 

RoBERTa [9], and ALBERT [10], which have set new 

benchmarks across a variety of NLP tasks. Furthermore, 

lightweight variants like TinyBERT [11] and 

MobileBERT [12] have addressed the need for efficiency, 

making these models more suitable for deployment in resource-

constrained environments. 

 

These evolving architectures form the technological 

foundation for building robust, scalable, and high-performance 

text classification systems. Their continuous development 

remains central to the progress of NLP. 

 

In this context, the present paper investigates and 

compares the effectiveness of three deep learning 

architectures—Long Short-Term Memory (LSTM), 

Bidirectional LSTM (BiLSTM) [13], and Character-level 

Convolutional Neural Network (Char-CNN)[14] —using AG 

News dataset for text classification . While LSTM and 

BiLSTM operate at the word level and excel at capturing 

sequential dependencies, Char-CNN works directly with 

character-level inputs, making it particularly resilient to out-of-

vocabulary (OOV) words and noisy textual data. 

 

A key component across all these architectures is the 

embedding layer, which plays a vital role in transforming high-

dimensional, sparse input data into dense, low-dimensional 

vector representations. Unlike traditional encoding techniques 

such as one-hot vectors or TF-IDF [15], which treat tokens as 

independent and orthogonal, embedding layers learn 

continuous-valued vectors where semantically similar tokens 

are mapped to nearby points in the space. This capability 

enhances the model’s generalization, reduces computational 

overhead, and facilitates more nuanced learning of syntactic 

and semantic relationships. In the LSTM, BiLSTM, and Char-

CNN models studied here, embedding layers form the base for 

modeling context and dependencies, contributing to more 

effective learning from sequential data. 

 

To ensure a fair and rigorous comparison, a unified 

preprocessing and training pipeline was implemented across all 

models. Their performance was evaluated using key metrics 

such as classification accuracy, training time, and learning 

stability. The results demonstrate that while BiLSTM 

outperforms others in terms of accuracy and efficiency, Char-

CNN exhibits competitive performance with distinctive 

strengths in processing raw and noisy text. This comparative 

study underscores the importance of architectural choices in 

shaping the practical effectiveness and adaptability of deep 

learning models for real-world NLP applications. 

 

II. DATASET 

 

The AG News dataset [14] consists of 120,000 training 

samples and 7,600 test samples, evenly distributed across 4 

news categories: 0 World, 1 Sports, 2 Business,3 

Science/Technology. The dataset was downloaded from 

Kaggle. 

 

The samples are listed in Figure 1 that include columns 

label, title and description (short summary) of a news article, 

making it ideal for document classification, information 

retrieval, and deep learning-based NLP tasks. 

 

III. MODELS AND EXPERIMENTAL  

 

This section presents the deep learning models employed 

for the task of text classification, along with the corresponding 

experimental setup. The models include Long Short-Term 

Memory (LSTM), Bidirectional LSTM (BiLSTM), and 

Character-level Convolutional Neural Network (Char-CNN), 

each chosen for their unique ability to handle sequential and 

textual data. The LSTM model captures temporal dependencies 

in a unidirectional fashion, while BiLSTM enhances this by 

processing sequences in both forward and backward directions, 

thus gaining richer contextual understanding. The Char-CNN 

model, on the other hand, operates at the character level, 

making it robust to spelling variations and out-of-vocabulary 

(OOV) words. These models were trained and evaluated using 

a consistent experimental pipeline to ensure comparability in 

performance. The setup includes preprocessing techniques, 

model architectures, hyperparameter tuning, and evaluation 

metrics, all of which are detailed in the subsequent subsections. 

 

A. A. LSTM-based Text Classification Model 

The LSTM-based model for text classification starts with 

an Embedding layer, which transforms input words into dense 

128-dimensional vectors. With a vocabulary limit of 10,000 

and a maximum input sequence length of 200 tokens, this layer 

outputs a tensor of shape (None, 200, 128). It is followed by a 

unidirectional LSTM (Long Short-Term Memory) layer with 

128 units. This layer processes sequences in the forward 

direction and is well-suited for capturing dependencies in 

textual data over time. To prevent overfitting, a Dropout layer 

with a dropout rate of 0.5 is applied. The output is then passed 

through a Dense layer with 64 units and ReLU activation to 

enable non-linear feature learning. The final Dense output layer 

has 4 units with softmax activation to perform multi-class 

classification corresponding to the four categories in the AG 

News dataset. This model has about 1.42 million trainable 

parameters, providing a balanced mix of capacity and 

simplicity for baseline experimentation. 

 

B. Bidirectional LSTM-based Text Classification Model 

The Bidirectional LSTM model expands on the standard 

LSTM architecture by incorporating context from both past and 

future tokens within each sequence. It begins with the same 

Embedding layer as the previous model, producing a (None, 

200, 128) tensor. The Bidirectional LSTM layer comprises two 

LSTMs — one processing the input sequence from left to right 

and the other from right to left — resulting in an output 

dimensionality of 256. This bi-directional flow allows the 

model to better understand the context of each word within a 

http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                            https://doi.org/10.38124/ijisrt/25may1682 

 

 

IJISRT25MAY1682                                                            www.ijisrt.com                                                                                        2570     

sentence. Following this is a Dropout layer to mitigate 

overfitting. The Dense layer with 64 units and ReLU activation 

helps refine the learned features before classification. The final 

Dense layer uses softmax activation across 4 units to categorize 

the input text into one of the four AG News classes. This model 

has approximately 1.56 million parameters, offering more 

representational power than the standard LSTM model. 

C. Character-level Convolutional Neural Network (Char-

CNN) 

This character-level CNN model processes text as a 

sequence of individual characters, capturing fine-grained 

patterns at the subword level. Unlike traditional word-based 

models, this architecture begins with an Embedding layer that 

transforms each character (encoded as an integer) into a dense 

128-dimensional vector, allowing the model to learn 

distributed character-level representations. 

 

 
Fig 1   AG News Dataset (Sample) 

 
The core of the model comprises multiple stacked 1D 

convolutional layers with 256 filters each. The initial two 

convolutional layers use a kernel size of 7 to capture longer 

character n-grams, followed by max-pooling layers to 

downsample the feature maps and emphasize the most salient 

features. Subsequent layers use smaller kernel sizes (3) and 

continue deep feature extraction, enabling the model to learn 

increasingly abstract character-level patterns. 

 

A Flatten layer converts the 3D feature maps into a 1D 

vector, which is then passed through two dense layers with 

1024 neurons each and ReLU activations, interleaved with 

dropout layers (0.5) to mitigate overfitting. Finally, a softmax-

activated output layer assigns the input text to one of four target 

categories. 

 

This architecture is particularly effective in scenarios 

with noisy, informal, or misspelled text data, as it does not rely 

on a predefined vocabulary. Instead, it builds its understanding 

directly from character sequences, offering robustness to out-

of-vocabulary issues. Though deeper and more 

computationally intensive, it is well-suited for large-scale, raw-

text classification tasks. 

 

 

IV. RESULTS 

 

The LSTM model demonstrated consistent but 

underwhelming performance throughout the training process, 

as evidenced by the following metrics across five epochs. In the 

first epoch, the model achieved a training loss of 1.3868 and a 

training accuracy of 24.8%, with the validation loss at 1.3864 

and a validation accuracy of 25.0%. This pattern remained 

relatively stable throughout the subsequent epochs, with 

training accuracy fluctuating slightly between 24.76% and 

25.09%, and validation accuracy consistently maintaining 

25.0%. By the final epoch, the training loss slightly increased 

to 1.3865, and the validation loss stayed near 1.3863. 

 

Several important observations can be made from these 

results: 

 

Loss is not decreasing significantly: This suggests that the 

model is stuck and is not improving. The consistent high loss 

indicates that the model is not making meaningful progress 

during training. 
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Accuracy is around 25%: Since the AG News dataset has 

4 classes, random guessing would also give 25% accuracy. The 

model's accuracy being stuck at this level further suggests that 

it is not learning anything meaningful and is simply making 

random predictions. 

 

Validation accuracy is not improving: This indicates that 

the model is either: 

 

Not learning from the data (underfitting), possibly due to 

an inappropriate model choice, insufficient training, or lack of 

relevant features. 

 

Facing an incorrect training setup, such as wrong 

hyperparameters, preprocessing issues, or other underlying 

problems affecting the model's ability to generalize beyond the 

training data. 

 

Overall, these points highlight that the LSTM model is 

failing to capture the necessary patterns in the data, and 

adjustments to the model architecture, hyperparameters, or 

training process may be necessary to improve its performance. 

 

The Bidirectional Long Short-Term Memory (BiLSTM) 

model was trained for 5 epochs, with a total training duration 

of approximately 8662.24 seconds (144.37 minutes). The 

model exhibited strong classification performance and stability 

throughout the training process. 

 

In Epoch 1, the model achieved a training accuracy of 

88.45% and a validation accuracy of 91.01%, with 

corresponding training and validation losses of 0.3366 and 

0.2651, respectively, over 1173 seconds. Epoch 2 showed 

improved performance, reaching 92.51% training accuracy and 

91.39% validation accuracy, with training completed in 1118 

seconds. 

 

During Epoch 3, the model further advanced to a training 

accuracy of 93.96% and a validation accuracy of 91.71%, 

taking 1630 seconds. Epoch 4 maintained high accuracy levels 

with 95.14% training and 91.24% validation accuracy, trained 

over 2845 seconds. In Epoch 5, the model achieved its highest 

training accuracy of 96.08%, with a slightly lower validation 

accuracy of 91.62%, in 1895 seconds. 

 

The results affirm the BiLSTM model’s strength in 

capturing sequential dependencies in text, delivering high 

accuracy with efficient training times. 

 

The training of the Character-level Convolutional Neural 

Network (Char-CNN) model was carried out over 5 epochs, 

completing in approximately 15,230 seconds (253.83 minutes). 

The model demonstrated consistent improvements in 

classification performance across epochs. 

 

In Epoch 1, the model achieved a training accuracy of 

61.37% and a validation accuracy of 83.00%, with 

corresponding losses of 0.8824 and 0.4750, respectively, over 

2644 seconds. Epoch 2 showed significant improvement, 

reaching a training accuracy of 85.68% and a validation 

accuracy of 84.78%, completed in 3047 seconds. 

Performance continued to rise in Epoch 3, with the 

training accuracy increasing to 88.28% and validation accuracy 

to 87.76%, taking 3930 seconds. Epoch 4 recorded the highest 

validation accuracy of 88.47%, alongside a training accuracy 

of 89.54%, in 2859 seconds. Finally, Epoch 5 maintained 

strong metrics with 90.48% training accuracy and 87.41% 

validation accuracy, trained in 2751 seconds. 

 

These results reflect the effectiveness of character-level 

feature learning in capturing textual nuances and achieving 

high classification accuracy with a reasonable training 

duration. 

 

V. COMPARATIVE ANALYSIS: CHAR-CNN VS. 

BIDIRECTIONAL LSTM 

 

Both Character-level Convolutional Neural Network 

(Char-CNN) and Bidirectional Long Short-Term Memory 

(BiLSTM) models were trained under identical experimental 

conditions, including batch sizes and a fixed training duration 

of five epochs. 

 

Despite these uniform settings, the two architectures 

demonstrated distinct performance profiles in terms of training 

efficiency, and accuracy progression as shown in Table 1. 

BiLSTM proved significantly more time-efficient, completing 

training in approximately 8,662 seconds (~144.37 minutes), 

which is nearly 43% faster than Char-CNN’s 15,230 seconds 

(~253.83 minutes). This substantial difference in training time 

underscores BiLSTM’s computational efficiency despite its 

recurrent structure. 

 

In terms of accuracy, BiLSTM exhibited a consistently 

higher validation accuracy across all epochs. It began with a 

strong initial accuracy of 91.01%, peaked at 91.71% in the third 

epoch, and maintained a stable performance, closing at 91.62%. 

In contrast, Char-CNN started at 83.00%, reached its highest 

accuracy of 88.47% in the fourth epoch, and ended slightly 

lower at 87.41%. This suggests that while Char-CNN improved 

steadily, it was unable to match the predictive accuracy of 

BiLSTM. 

 

Loss values further reinforced BiLSTM’s advantage. The 

model achieved lower and more stable validation loss, starting 

at 0.2651 and fluctuating mildly between 0.2576 and 0.3033. 

Char-CNN, on the other hand, began with a higher loss of 

0.4750 and reached its lowest point at 0.3463. These results 

indicate that BiLSTM not only converged faster but also 

maintained greater generalization stability throughout training. 

Collectively, these insights highlight the superiority of 

BiLSTM in both learning efficiency and model performance 

for this text classification task, despite Char-CNN’s strengths 

in handling character-level inputs. 

 

In addition to performance metrics, the models were also 

analysed for their architectural complexity, particularly the 

number of trainable parameters as shown in Table 2. The 

LSTM and BiLSTM models contained approximately 1.4 to 

1.8 million parameters, reflecting their relatively lightweight 

design optimized for sequence modeling using word-level 

embeddings. In contrast, the Character-level Convolutional 

Neural Network (Char-CNN) had a significantly higher 
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parameter count of 11,452,676. This substantial increase stems 

from the convolutional layers applied over character 

embeddings and the fully connected layers used for 

classification. While the larger parameter space of Char-CNN 

enables it to learn nuanced subword patterns and morphological 

features, making it resilient to noisy or out-of-vocabulary input, 

it also contributes to longer training times and greater memory 

consumption. This comparison underscores the trade-offs 

between model expressiveness and computational efficiency, 

particularly in scenarios where deployment resources are 

limited. 

 

Table 1 Comparison of Model Accuracy and Training Time 

Model Validation Accuracy Training Time (s) Remarks 

LSTM ~25% 5,800 Failed to learn effectively; minimal gains across epochs. 

BiLSTM 91.7% 8,662 Best overall performance; efficient convergence. 

Char-CNN 87.8% 15,230 Robust to out-of-vocabulary inputs; longest training 

time. 

 

Table 2 Comparison of Model Parameters 

Model Total Parameters Description 

LSTM 1.42 million Uses word-level embeddings and a single-directional LSTM layer. 

BiLSTM 1.56 million Roughly double the LSTM due to bidirectional connections. Captures both past 

and future context. 

Char-CNN 11,452,676 

(11.45 million) 

Substantially higher parameter count. Uses convolutional filters over character 

embeddings, allowing for robust subword and morphological feature learning. 

 

VI. CONCLUSION 

 

The LSTM model underperformed with ~25% validation 

accuracy, indicating it failed to learn beyond random guessing. 

The BiLSTM model achieved the best performance with 91.7% 

accuracy in less time (~8,662s), effectively capturing 

bidirectional context and sequential dependencies. Char-CNN, 

while robust to noisy text and achieving a decent 87.8% 

accuracy, required the longest training time (~15,230s) and the 

most parameters (11.45M), making it less efficient. BiLSTM’s 

relatively lower parameter count (1.56M) and high accuracy 

suggest it generalizes well without overfitting. These results 

highlight BiLSTM as the most practical and scalable choice for 

real-world text classification tasks. 
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